gpt4 book ai didi

【编码】如何实现一套自定义网络协议?

转载 作者:撒哈拉 更新时间:2025-01-07 18:40:57 58 4
gpt4 key购买 nike

前言

下文介绍的自定义协议仅作为学习示例,纯粹是玩具项目,没有实际可用性。无需过度关注和讨论其合理性 。

进行通信的双方是谁?

常见的模型 。

客户端-服务器,例如HTTP协议,浏览器<=>Web服务器.

中转站模型,如MQTT协议,应用服务<=>中转站<=>硬件客户端 。

对等模型,例如Thrift协议,应用服务<=>应用服务.

通用协议如此丰富,还需要自定义协议吗?

需要。许多中间件服务在构建集群时,服务节点之间需要进行高效的内部通信.

在这种场景下,自定义协议能发挥巨大的作用:

  • 去除冗余字段:自定义协议能够减少无用字段,最大化优化通信吞吐量
  • 灵活性:自定义协议可以根据需求进行灵活扩展,支持注入优先级控制,解压缩控制等特点。

自定义协议可以减少无用字段,最大限度地优化通信吞吐量;也更加灵活,可以进行优先级控制.

例如,Kafka 就使用了自定义协议来满足高效的消息传递需求.

自定义协议设计

所谓网络协议,就是传输的报文格式,以及收发双方处理报文的规则.

报文格式做如下设计:

  • 固定头部(4字节)
    • 字节1:消息类型
      • 1=req,2=res, 3=pub, 4=sub, 5=msg
      • 用一个字节来表示类型有点浪费了。
    • 字节2~字节4:消息体长度
      • 这三个字节能够表示最大值为 16777215,即最大消息体长度为 16MB
  • 消息体(可变长度)

规则:

1.服务端收到req包,需返回res包 。

2.服务端收到sub包,需更新订阅情况 。

3.服务端收到pub包,需根据订阅情况发送msg包 。

粘拆包问题

在设计网络协议时,不可不谈粘拆包问题.

什么是粘包和拆包?

这两个都是接收端在接收数据时遇到的问题,其中 。

  • 粘包:多个数据包合并成一个包接收
  • 拆包:一个数据包被拆分成多个包接收

为什么会出现粘包与拆包?

根本原因就是传输层的TCP协议,是面向字节流的,它不知道数据边界.

此外,TCP根据网络情况(如最大传输单元MTU)动态调整报文大小,导致数据包的分段与合并.

从而产生粘包和拆包问题 。

传输流程:

1.发送缓冲区:当应用层产生数据后,这些数据会首先进入Socket连接的发送缓冲区 。

2.数据拆分:网卡根据缓冲区中的数据内容,将数据拆分成多个小的TCP数据报进行发送 。

3.接收与重组:接收端的TCP栈会将接收到的多个TCP数据包重新组装成完整的字节流(Socket接收缓冲区) 。

案例场景

一个常见的场景是,客户端连续发送多个消息(如 100 个字符串),而服务端接收到的数据可能并不完全是 100 条.

要复现这种问题也很简单,只要客户端连续发100个字符串,检查服务端收到的数据条数.

客户端代码:连接建立后,连续发送100次字符串 。

    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
//        ctx.writeAndFlush(Unpooled.copiedBuffer("Netty rocks!", CharsetUtil.UTF_8));
        new Thread(() -> {
            for (int i = 0; i < 100; i++) {
                ctx.writeAndFlush(Unpooled.copiedBuffer("Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!", CharsetUtil.UTF_8));
            }
        }).start();
    }

服务端代码:每收到一个包,就打印一次.

    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
        ByteBuf in = (ByteBuf) msg;
        System.out.println("Server Receive:"+in.toString(CharsetUtil.UTF_8));
        ctx.write(in);
    }

结果:仅收到两个包,同时存在粘包和拆包问题。一个Siuuuu被截断了 。

Server Receive:Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuu
Server Receive:uuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!Siuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu!

如何处理粘包和拆包?

处理方式由消息格式决定 。

  • 固定长度:每条消息的长度固定,不足部分使用填充
  • 特殊分隔符:每条消息的末尾添加特定的分隔符
  • 消息头+消息体:消息头长度固定,包含消息体长度信息

由于我们采用的时第三种方式,也是最复杂的一种.

处理的核心在于消息头,因为它携带了消息体的长度信息,是判断消息边界的关键.

粘包的处理 。

步骤如下:

  1. 提取消息头:首先提取消息头,从中获取消息体的长度信息
  2. 读取完整消息:根据消息体的长度,从数据流中读取完整的消息内容
  3. 重复执行:重复步骤1和步骤2,直到没有更多的数据,或当前数据不足以构成完整的消息

拆包的处理 。

拆包的处理方式与粘包类似:

  1. 缓存数据:如果接收到的数据不足一条完整消息,则将数据存入缓冲区。
  2. 合并新数据:在接收到新数据时,判断缓冲区和新数据是否可以组成完整消息,直到消息完整为止。
  3. 继续缓存:剩下的数据如果不足,则继续缓存

代码案例 。

1)客户端 。

根据上面的协议格式,构建消息。(这里的消息体内容是随机字符串,实际应用中通常是序列化后的POJO对象。) 。

连接建立后连续发送200条随机长度的消息.

public class EchoClientHandler extends SimpleChannelInboundHandler<ByteBuf> {


    @Override
    public void channelInactive(ChannelHandlerContext ctx) throws Exception {
        super.channelInactive(ctx);
        System.out.println("断开连接");
    }

    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
        new Thread(() -> {
            //连续发送200条消息
            for (int i = 0; i < 200; i++) {
                try {
                    ctx.writeAndFlush(Unpooled.copiedBuffer(buildRandomMsg()));
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }).start();

    }

    protected void channelRead0(ChannelHandlerContext channelHandlerContext, ByteBuf byteBuf) throws Exception {
        System.out.println("Client receive:"+byteBuf.toString(CharsetUtil.UTF_8));
    }

    @Override
    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
        cause.printStackTrace();
        ctx.close();
    }

    //构建消息,其中body内容为随机长度的随机字符串
    public static byte[] buildRandomMsg() throws IOException {
        int length = RandomUtil.randomInt(100, 200);
        String body = RandomUtil.randomString(length);

        System.out.println("长度:"+length+"||内容:"+body);

        byte type = 1;
        byte[] lengthBytes = new byte[3];
        lengthBytes[0] = (byte) (length >> 16);
        lengthBytes[1] = (byte) (length >> 8);
        lengthBytes[2] = (byte) length;
        byte[] bodyBytes = body.getBytes(CharsetUtil.UTF_8);
        return concatByteArrays(new byte[]{type}, lengthBytes, bodyBytes);
    }

    //拼接字节数组
    public static byte[] concatByteArrays(byte[]... byteArrays) throws IOException {
        // 使用 ByteArrayOutputStream 来拼接字节数组
        ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();

        for (byte[] array : byteArrays) {
            byteArrayOutputStream.write(array);
        }

        // 返回拼接后的字节数组
        return byteArrayOutputStream.toByteArray();
    }
}

2)服务端 。

在看代码前,先说明一下channelRead的调用流程 。

  • Socket接收到TCP报文,将数据写入内核缓冲区
  • NIO线程检测到此Socket有可读消息
  • NIO线程从内核缓冲区读取消息,得到ByteBuf msg
  • NIO线程调用channelRead

得到两个信息 。

  1. msg是从缓冲区读取的,它可能包含多条完整消息 + 一条残缺消息。
  2. msg已经从缓冲区读出,缓冲区数据已清空。对于不完整的消息需要自行缓存

下面代码是直接实现的,主要用来介绍完整的处理逻辑.

实际应用中推荐继承Netty提供的ByteToMessageDecoder,它帮你实现了缓存管理.

public class EchoServerHandler extends ChannelInboundHandlerAdapter {
    private static final int HEADER_LENGTH = 4; //消息头部长度
    private ByteBuf buffer = Unpooled.buffer(1024); //缓存残缺消息

    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
        ByteBuf income = (ByteBuf) msg;

        //上一次有缓存存在,则本数据包不是消息头开头,
        if(buffer.readableBytes() > 0) {
buffer.ensureWritable(income.readableBytes()); //进行必要的扩容 income.readBytes(buffer, income.readableBytes()); readMsgFromBuffer(buffer);
//剩下一点残缺消息 if(buffer.readableBytes() > 0) { //保留剩下的数据,重置读索引为0 System.out.println("缓存剩余字节:"+buffer.readableBytes()); buffer.discardReadBytes(); } else { //刚刚好,则清空数据 buffer.clear(); } } else { readMsgFromBuffer(income); //剩下的数据全部写入缓存 if (income.readableBytes() >0) { System.out.println("剩余字节:"+income.readableBytes()); income.readBytes(buffer, income.readableBytes()); } } } //从字节数组中读取完整的消息 private void readMsgFromBuffer(ByteBuf byteBuf) { //剩余可读消息是否包含一个消息头 while(byteBuf.readableBytes() >= HEADER_LENGTH) { byteBuf.markReaderIndex(); //由于可能读不到完整的消息,所以读之前先标记索引位置,方便重置 //读取消息头 byte[] headerBytes = new byte[4]; byteBuf.readBytes(headerBytes); //获取类型 int type = headerBytes[0] & 0xFF; //获取消息体长度 int bodyLength = ((headerBytes[1] & 0xFF) << 16) | ((headerBytes[2] & 0xFF) << 8) | (headerBytes[3] & 0xFF); //不包含请求体 if (byteBuf.readableBytes() < bodyLength) { byteBuf.resetReaderIndex(); //重置读索引到当前消息头位置 break; } // 完整消息体已经接收,处理消息 byte[] body = new byte[bodyLength]; byteBuf.readBytes(body); System.out.println("type:"+type+"||length:"+bodyLength+"||body:"+new String(body, CharsetUtil.UTF_8)); } } @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { // ctx.writeAndFlush(Unpooled.EMPTY_BUFFER).addListener(ChannelFutureListener.CLOSE); ctx.writeAndFlush(Unpooled.EMPTY_BUFFER); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); } }

服务端输出:服务端逐行打印出消息类型,长度,消息体.

...
type:1||length:175||body:0cDDAkum0F9DNwF511AKitTe2zRoSc27IjBYwgoODkXxx78xp0cowcDDNWTZ6xjCZyn6wmI2UxXLYB25TjUnOG9ZyjiZ9Jge3kbxabRjZAo0qsCYFfKMyzxApp953z1N7uDbP9rmlxeyYbYiif3y3ybtnnaAkuKFcspje6SLRnY69Nz

消息体编解码(序列化)

在经过前面粘包和拆包处理后,我们已经能够成功地从数据流中分离并组装出完整的消息。然而,在实际应用中,消息体通常需要进一步转换为对象,才能提交给上层的业务逻辑.

这是传输层的关键职责之一.

常见序列化方法

常见的POJO对象序列化方式包括:

Java序列化(Serializable) 。

优点:内置,无需额外依赖.

缺点:

  • 性能较差,序列化和反序列化速度较慢。
  • 无法跨语言使用,限制了不同语言(如Java服务端和C++客户端)之间的数据交换。

JSON 。

优点:可读性好,方便调试,支持各种语言 。

缺点:相较于二进制格式,JSON的键(key)通常占用较多空间,大规模数据传输时,带宽开销大.

Protocol Buffers(ProtoBuf) 优势:

  • 高效的二进制序列化,体积小,序列化和反序列化速度快。
  • 支持跨语言使用,适用于不同编程语言之间的通信。

代码案例

这里我们使用ProtoBuf.

构建消息类 。

写一个.proto文件,定义消息格式.

hello_request.proto 。

option java_multiple_files = true;
option java_package = "protocol";
option java_outer_classname = "Request";

message HelloRequest {
    required string requestId = 1;
    optional string content = 2;
}

下载ProtoBuf编译工具包,protoc-{version}-win64.zip 。

https://github.com/protocolbuffers/protobuf/releases

编译,得到Java文件 。

protoc -I=$SRC_DIR --java_out=$DST_DIR $SRC_DIR/hello_request.proto

引入对应版本的Jar包。(jar包版本要和protoc版本一致,否则报错) 。

https://mvnrepository.com/artifact/com.google.protobuf/protobuf-java

接着就可以使用类构建POJO对象和对象的编解码了.

客户端 。

其他地方不变,使用上面生成好的HelloRequest类,构建对象。通过setter塞入数据,然后通过toByteArray()得到序列化后的二进制数据.

注意:现在的length应该是整个消息体的字节数,不再是随机字符串的长度.

public static byte[] buildRandomMsg() throws IOException {
        int randomStrLength = RandomUtil.randomInt(100, 200);
        String msgId = UUID.randomUUID().toString();
        String content = RandomUtil.randomString(randomStrLength);
        HelloRequest request = HelloRequest.newBuilder()
                .setRequestId(msgId)
                .setContent(content)
                .build();
        byte[] bodyBytes = request.toByteArray();
        int length = bodyBytes.length;

        System.out.println("发送消息:"+request.toString());

        byte type = 1;
        byte[] lengthBytes = new byte[3];
        lengthBytes[0] = (byte) (length >> 16);
        lengthBytes[1] = (byte) (length >> 8);
        lengthBytes[2] = (byte) length;

        return concatByteArrays(new byte[]{type}, lengthBytes, bodyBytes);
    }

服务端 。

其他地方不变,解析body的时候,使用HelloRequest.parseFrom(byte[] bytes)进行解码,得到HellpRequest对象.

   //System.out.println("type:"+type+"||length:"+bodyLength+"||body:"+new String(body, CharsetUtil.UTF_8));
   if(type == 1) {
        try {
              HelloRequest request = HelloRequest.parseFrom(body);
              System.out.println("收到消息:"+request.toString());
        } catch (Exception e) {
              System.out.println("解析失败:"+new String(body, CharsetUtil.UTF_8));
        }
    } else {
              System.out.println("消息类型未知:"+type);
    }

结果 。

客户端输出 。

...
发送消息:requestId: "ca9b3e07-0662-467c-9bed-843b519c2480"
content: "q82EuHvGgMhwbHl1t0qfv4M2NCJLikxahpEc8q9ezpCWUbU9M1Oh6U6zfIOnBC50ex5BweYfZ2JB0NoLmP4hgIsNzZ8mtfFPayi8KlDWRQw3gj7ENRgxjbm4HxJgrdDNobuguc8EPQ3SccWXGTsZytLEeOHJXskiGlH4oEf"

服务端输出 。

....
收到消息:requestId: "ca9b3e07-0662-467c-9bed-843b519c2480"
content: "q82EuHvGgMhwbHl1t0qfv4M2NCJLikxahpEc8q9ezpCWUbU9M1Oh6U6zfIOnBC50ex5BweYfZ2JB0NoLmP4hgIsNzZ8mtfFPayi8KlDWRQw3gj7ENRgxjbm4HxJgrdDNobuguc8EPQ3SccWXGTsZytLEeOHJXskiGlH4oEf"

实现异步请求

结构设计

底层Socket是天然支持异步的,因为发送和接收是可以同时进行的,不会互相影响.

要实现异步请求的效果,上层API只要做到以下几点:

  1. 请求发送后,不会阻塞当前执行线程
  2. 响应到达后可以触发回调
  3. 超时(指定时间内没有收到响应)也可以触发回调

实现方式 。

  1. 请求接口发送请求后返回Future对象,可选择同步等待
  2. 客户端保留请求和对应的callback
  3. 服务端响应的时候返回请求ID
  4. 客户端根据ID获取关联请求,执行callback。

首先,项目结构图如下

1.划线部分是废弃类 。

2.【变更】解码方式修改,新增通用的MessageDecoder可供双方解码,其继承于ByteToMessageDecoder.

3.【新增】新增HelloResponse 。

4.【新增】新增通用MessageEncoder,继承于MessageToByteEncoder 。

 代码实现

1. MessageDecoder.java 。

相比前面直接实现的,这里不用去管理缓存。另外,这里解析好的消息会写入List,但它其实是逐个传给下一个Handler.

public class MessageDecoder extends ByteToMessageDecoder {
    private static final int HEADER_LENGTH = 4; //消息头部长度

    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
        // 检查是否足够的字节来读取一个消息头
        while (in.readableBytes() >= HEADER_LENGTH) {
            in.markReaderIndex(); // 标记当前读取位置,便于重置

            // 读取消息头部
            byte[] headerBytes = new byte[4];
            in.readBytes(headerBytes);

            // 获取类型
            int type = headerBytes[0] & 0xFF;
            // 获取消息体长度
            int bodyLength = ((headerBytes[1] & 0xFF) << 16) |
                    ((headerBytes[2] & 0xFF) << 8) |
                    (headerBytes[3] & 0xFF);

            // 检查缓冲区中的数据是否足够读取整个消息体
            if (in.readableBytes() < bodyLength) {
                in.resetReaderIndex(); // 重置读指针,等待更多数据
                break;
            }

            // 读取消息体
            byte[] body = new byte[bodyLength];
            in.readBytes(body);

            // 处理消息,根据消息头中的类型,解析成不同的对象
            try {
                Object msg = null;
                if(type == 1) {
                    msg = HelloRequest.parseFrom(body);
                } else if(type == 2) {
                    msg = HelloResponse.parseFrom(body);
                } else {
                    System.out.println("未知消息:"+new String(body, CharsetUtil.UTF_8));
                }
                if(Objects.nonNull(msg)) {
                    out.add(msg);
                }

            } catch (Exception e) {
                System.out.println("解析失败: " + new String(body, CharsetUtil.UTF_8));
            }
        }
    }
}

2.MessageEncoder.java 。

ProtoBuf生成的类可以调用toByteArray()序列化成字节数组。这样消息体的二进制数据就有了.

而消息头则根据消息类型和消息体长度进行构建 。

public class MessageEncoder extends MessageToByteEncoder<Object> {
    @Override
    protected void encode(ChannelHandlerContext ctx, Object msg, ByteBuf out) throws Exception {
        if(!(msg instanceof GeneratedMessage)) {
            System.out.println("未知类型:"+msg.getClass());
            return;
        }
        int type = 0;
        if(msg instanceof HelloRequest) {
            type = 1;
        } else if(msg instanceof HelloResponse) {
            type = 2;
        }
        byte[] bodyBytes = ((GeneratedMessage) msg).toByteArray();
        int length = bodyBytes.length;
        byte[] lengthBytes = new byte[3];
        lengthBytes[0] = (byte) (length >> 16);
        lengthBytes[1] = (byte) (length >> 8);
        lengthBytes[2] = (byte) length;
        out.writeByte(type);
        out.writeBytes(lengthBytes);
        out.writeBytes(bodyBytes);
    }
}

3.ServerMessageHandler 。

服务器得到Decoder解析好的消息后,间隔一段时间(1-4秒)发回响应内容.

public class ServerMessageHandler extends SimpleChannelInboundHandler<Object> {
    //异步线程
    private ScheduledExecutorService mockRequestHandler = Executors.newSingleThreadScheduledExecutor();

    @Override
    protected void channelRead0(ChannelHandlerContext ctx, Object msg) throws Exception {
        if(msg instanceof HelloRequest) {
            System.out.println("收到消息:"+msg);
            HelloRequest request = (HelloRequest) msg;

            //使用处理线程,不阻塞NIO线程
            //模拟处理请求,处理时间随机1~4秒
            mockRequestHandler.schedule(() -> {
                ctx.writeAndFlush(HelloResponse.newBuilder()
                        .setRequestId(request.getRequestId()) 
                        .setStatus(200)
                        .setData("Handled:"+request.getContent()) //增加一个前缀,表示服务器已处理
                        .build()
                );
            }, RandomUtil.randomInt(1, 4), TimeUnit.SECONDS);

        }
    }
}

4.EchoServer 。

服务端启动类,配置Handler,启动端口监听.

public class EchoServer {
    private final int port;

    public EchoServer(int port) {
        this.port = port;
    }

    public void start() throws Exception {
        EventLoopGroup bossGroup = new NioEventLoopGroup(); //处理CONNECT的线程
        EventLoopGroup workerGroup = new NioEventLoopGroup(4); //Worker线程
        try {
            ServerBootstrap b = new ServerBootstrap();
            b.group(bossGroup, workerGroup)
                    .channel(NioServerSocketChannel.class)
                    .localAddress(port)
                    .childHandler(new ChannelInitializer<SocketChannel>() {
                        protected void initChannel(SocketChannel socketChannel) throws Exception {
                            socketChannel.pipeline()
                                    .addLast(new MessageDecoder())
                                    .addLast(new MessageEncoder())
                                    .addLast(new ServerMessageHandler());
                        }
                    });
            ChannelFuture f = b.bind().sync(); //开始监听
            System.out.println("启动监听:"+port);
            f.channel().closeFuture().sync(); //阻塞直到程序退出
        } finally {
            bossGroup.shutdownGracefully().sync();
            workerGroup.shutdownGracefully().sync();
        }
    }

    public static void main(String[] args) throws Exception {
        new EchoServer(9090).start();
    }
}

5.ClientMessageHandler 。

对接ClientApi 。

1.连接建立后告知ClientApi 。

2.收到响应后提交给ClientApi 。

public class ClientMessageHandler extends SimpleChannelInboundHandler<Object> {
    @Override
    protected void channelRead0(ChannelHandlerContext ctx, Object msg) throws Exception {
        if(msg instanceof HelloResponse) {
//            System.out.println("收到消息:"+msg);
            //收到响应内容,则触发回调
            ClientApi clientApi = Container.getClientApi();
            if(Objects.nonNull(clientApi)) {
                clientApi.onResponse((HelloResponse) msg);
            }
        } else {
            System.out.println("未知消息:"+msg);
        }
    }

    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
        super.channelActive(ctx);
        
        //连接成功,告知ClientApi
        ClientApi clientApi = Container.getClientApi();
        if(Objects.nonNull(clientApi)) {
            clientApi.onConnected(ctx);
        } 

    }
    
}

6.EchoClient 。

客户端启动类,配置编解码类和消息处理类,最后连接到目标地址.

注意:这里没有main入口,入口在Test类.

public class EchoClient {
    private final String host; private final int port; public EchoClient(String host, int port) { this.host = host; this.port = port; } public void start() throws Exception { EventLoopGroup group = new NioEventLoopGroup(); try { Bootstrap b = new Bootstrap(); b.group(group) .channel(NioSocketChannel.class) .remoteAddress(new InetSocketAddress(host, port)) .handler(new ChannelInitializer<SocketChannel>() { protected void initChannel(SocketChannel socketChannel) throws Exception { socketChannel.pipeline() .addLast(new MessageDecoder()) .addLast(new MessageEncoder()) .addLast(new ClientMessageHandler()); } }); ChannelFuture f = b.connect().sync(); System.out.println("开始连接"); f.channel().closeFuture().sync(); } finally { group.shutdownGracefully().sync(); } }  }
 

7.Container 。

很简单,就是一个静态类。用来存放ClientApi的引用 。

public class Container {
    public static ClientApi clientApi;

    public static void setClientApi(ClientApi clientApi) {
        Container.clientApi = clientApi;
    }

    public static ClientApi getClientApi() {
        return clientApi;
    }
}

8.ClientApi 。

ClientApi负责建立连接,发送请求,回调响应。支持同步和异步两种请求方式.

public class ClientApi {
    private final String host;
    private final int port;

    private final Map<String, CompletableFuture<HelloResponse>> waitingRequests = new HashMap<>();
    private final ScheduledExecutorService timer = Executors.newSingleThreadScheduledExecutor();
    private final ReentrantLock lock = new ReentrantLock();
    private ChannelHandlerContext ctx = null;
    private CompletableFuture<ChannelHandlerContext> waitConnectionFuture;

    ClientApi(String host, int port) {
        this.host = host;
        this.port = port;
        //初始化后注册到Container中,方便其他类引用
        Container.setClientApi(this);
    }

    //连接建立后,回调Context
    public void onConnected(ChannelHandlerContext ctx) {
        lock.lock();
        try {
            if(waitConnectionFuture != null) {
                waitConnectionFuture.complete(ctx);
                waitConnectionFuture = null;
            }
        } finally {
            lock.unlock();
        }
    }

    //获取连接
    public ChannelHandlerContext getConnection() throws Exception {
        lock.lock();
        try {
            //连接已存在,直接发
            if(ctx != null) {
                return ctx;
            }
            //连接不存在,建立连接
            waitConnectionFuture = new CompletableFuture<>();
            new Thread(()-> {
                try {
                    new EchoClient(host, port).start(); //这个会阻塞当前线程,所以另启线程
                } catch (Exception e) {
                    e.printStackTrace();
                    //连接断开,也触发回调
                    if(waitConnectionFuture != null) {
                        waitConnectionFuture.completeExceptionally(e);
                    }
                }
            }).start();
        } finally {
            lock.unlock();
        }

        //get()等待之前,需要释放锁
        ctx = waitConnectionFuture.get();
        return ctx;
    }

    public CompletableFuture<HelloResponse> baseRequest(HelloRequest request) {
        //先注册回调
        CompletableFuture<HelloResponse> future = new CompletableFuture<>();
        addToMap(request.getRequestId(), future);
        //再发送请求
        try {
            getConnection().writeAndFlush(request);
            System.out.println("发出消息:"+request);
        } catch (Exception e) {
            removeFromMap(request.getRequestId());
            throw new RuntimeException("请求错误:"+e);
        }
        //添加超时,防止服务器没响应,造成泄露
        timer.schedule(() -> timeout(request.getRequestId()), 5, TimeUnit.SECONDS);
        return future;
    }

    //同步请求
    public HelloResponse sendRequest(HelloRequest request) throws Exception {
        return this.baseRequest(request).get();
    }

    //异步请求
    public void sendRequestAsync(HelloRequest request, Function<HelloResponse, Boolean> callback) {
        this.baseRequest(request).thenApply(callback);
    }

    private void addToMap(String requestId, CompletableFuture<HelloResponse> future) {
        lock.lock();
        try {
            waitingRequests.put(requestId, future);
        } finally {
            lock.unlock();
        }
    }

    private void removeFromMap(String requestId) {
        lock.lock();
        try {
            waitingRequests.remove(requestId);
        } finally {
            lock.unlock();
        }
    }

    public void timeout(String requestId) {
        lock.lock();
        try {
            CompletableFuture<HelloResponse> future1 = waitingRequests.get(requestId);
            if(Objects.nonNull(future1)) {
                future1.completeExceptionally(new RuntimeException("请求超时"));
            }
        } finally {
            lock.unlock();
        }
    }

    public void onResponse(HelloResponse response) {
        lock.lock();
        try {
            //收到响应后,根据请求ID获取回调。
            CompletableFuture<HelloResponse> future1 = waitingRequests.get(response.getRequestId());
            if(Objects.nonNull(future1)) {
                future1.complete(response);
            }
        } finally {
            lock.unlock();
        }
    }

    public void close() {
        if(ctx != null) {
            ctx.close();
        }
    }

}

9.测试类 。

测试类,使用ClientApi,发送请求.

下面代码分别是同步发送5个请求和异步发送5个请求 。

public class Test {
    public static void main(String[] args) {
        ClientApi clientApi = new ClientApi("127.0.0.1", 9090);
        for (int i = 0; i < 5; i++) {
            try {
                HelloRequest request = buildHelloRequest();

                //同步请求,收到响应后才会发下一个请求
                HelloResponse response = clientApi.sendRequest(request);
                System.out.println("同步收到:" + response);
                //异步请求,发送完成即可发送下一个请求
//                clientApi.sendRequestAsync(request, response2 -> {
//                    System.out.println("异步收到:"+response2);
//                    return true;
//                });

            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }

    //构建请求
    public static HelloRequest buildHelloRequest() {
        int randomStrLength = RandomUtil.randomInt(100, 200);
        String msgId = UUID.randomUUID().toString();
        String content = RandomUtil.randomString(randomStrLength);
        HelloRequest request = HelloRequest.newBuilder()
                .setRequestId(msgId)
                .setContent(content)
                .build();
        return request;
    }
}

运行效果

1)同步请求 。

可以看到,只有收到前一个请求的响应后,才会发下一个请求 。

开始连接
发出消息:requestId: "7ac9008f-8532-4740-bb1f-f5fe2d60fd62"
content: "zYU1oWKiJdLX2K87J0306Xdeq0BmlkijpD1p6t831A3b2fEP0JCZT9QqaT7oWnCpoKMIpZRZ2gJWbSvEIhxs56m8Zr0YhsvaPdQj1x8f4Q1HuLh"

同步收到:requestId: "7ac9008f-8532-4740-bb1f-f5fe2d60fd62"
status: 200
data: "Handled:zYU1oWKiJdLX2K87J0306Xdeq0BmlkijpD1p6t831A3b2fEP0JCZT9QqaT7oWnCpoKMIpZRZ2gJWbSvEIhxs56m8Zr0YhsvaPdQj1x8f4Q1HuLh"

发出消息:requestId: "d74a8a83-28dd-4e40-9956-dfdd3d890bda"
content: "83LzAdgxQ8MYz1CmzRXfEn3ibz9WqiJHcQCRtkE4dCEZUnW44UNGfKtHR0nBNE7al7PdvdexEDDTth3Aoy6mati8TVOP54xRUT26MAaV0DP0UhU7V7QWaMfiKwV2oVpxMPqg2thwNdd5WCG53"

同步收到:requestId: "d74a8a83-28dd-4e40-9956-dfdd3d890bda"
status: 200
data: "Handled:83LzAdgxQ8MYz1CmzRXfEn3ibz9WqiJHcQCRtkE4dCEZUnW44UNGfKtHR0nBNE7al7PdvdexEDDTth3Aoy6mati8TVOP54xRUT26MAaV0DP0UhU7V7QWaMfiKwV2oVpxMPqg2thwNdd5WCG53"

发出消息:requestId: "e47f4135-dc92-4a25-9fed-ca7b4ced41f5"
content: "1St23ktz7nhXcICb0Yqo3QoLNRoeKJ4V4jKcaO8psUZRXnhXtIUG2WZC7d0TCbS221pUxqTlTDojSbtQvCzjIcL3JTgPkBg46rk8uRIpX3yvx0RHmZhwjBkpPoCTtWfTzk6r5SK0SK7g0QAjQacULIDXS5K1Z1U9q"

同步收到:requestId: "e47f4135-dc92-4a25-9fed-ca7b4ced41f5"
status: 200
data: "Handled:1St23ktz7nhXcICb0Yqo3QoLNRoeKJ4V4jKcaO8psUZRXnhXtIUG2WZC7d0TCbS221pUxqTlTDojSbtQvCzjIcL3JTgPkBg46rk8uRIpX3yvx0RHmZhwjBkpPoCTtWfTzk6r5SK0SK7g0QAjQacULIDXS5K1Z1U9q"

发出消息:requestId: "5122e929-be13-488e-b3ea-6e5acf7ebbbc"
content: "pj9sWOqhFGzplbUNieLOOzMKzSUEumgd2rMzR1cO4GwrmcXHb5vma32LbuHVQl8tkigKMHk9HCKM9xnUAdbCqopeTzbo0ixQkGzclud78hVFTV4PM2qYZDeWMBRDMrUXOJS0sCIxgyGFudz7XUGfJNSuJjio8dch8JPDRmHkZsABRxobZeafxiqGT"

同步收到:requestId: "5122e929-be13-488e-b3ea-6e5acf7ebbbc"
status: 200
data: "Handled:pj9sWOqhFGzplbUNieLOOzMKzSUEumgd2rMzR1cO4GwrmcXHb5vma32LbuHVQl8tkigKMHk9HCKM9xnUAdbCqopeTzbo0ixQkGzclud78hVFTV4PM2qYZDeWMBRDMrUXOJS0sCIxgyGFudz7XUGfJNSuJjio8dch8JPDRmHkZsABRxobZeafxiqGT"

发出消息:requestId: "0cd23413-303d-4414-8cf1-20bd46a691d2"
content: "YWnQxVh0Z4yLPQeM6q3aiz7JYD6fEqZHFiE45KgebiZlwW7DlYnhZTZ7sG4rZqrvsHXQ65PCoN569kfJMHuJFp9kqnlBKeJ1iawYBFQfI5EqspxsaB7vkMuC1vA5ula2jwagoQoU6Yk0gi0EKEX1fpLIYvtYdMqTWjAfLFqc5s8yjPr0G"

同步收到:requestId: "0cd23413-303d-4414-8cf1-20bd46a691d2"
status: 200
data: "Handled:YWnQxVh0Z4yLPQeM6q3aiz7JYD6fEqZHFiE45KgebiZlwW7DlYnhZTZ7sG4rZqrvsHXQ65PCoN569kfJMHuJFp9kqnlBKeJ1iawYBFQfI5EqspxsaB7vkMuC1vA5ula2jwagoQoU6Yk0gi0EKEX1fpLIYvtYdMqTWjAfLFqc5s8yjPr0G"

2)异步请求 。

可以看到5个请求会直接发出,不会等待响应。响应顺序也跟请求顺序不一样.

开始连接
发出消息:requestId: "2096b54f-825c-4fdf-817e-97b3a4b99fb2"
content: "ckp1dXcnYItdXafrURU6gJ9b5qW19rqPKLB22qlA2sHRfkSZEpmT4qi0TOAaDbM43v62svI1K6IccnlJtCjlpcu8RAdpfuO5hNBWsXpOaSGUgY4loLNlNFIDE5o7juhfCD2skV2"

发出消息:requestId: "e8c501e0-a4e2-4972-a6be-f92539141252"
content: "ZpOz1YK6e9VOrX69xqNovUXfapY6Ito7z6LlsM6o1Vzeo1hibzvOcxAzYD8hIsOFvGAqk024XbL7yidlgPk4F9GId6ydRxzjjNdg8csxG9FdBXzzr6xuESJ"

发出消息:requestId: "2c56fc02-5fd8-4c17-bca5-ab0def66493c"
content: "FzoUaLvHxA0Tm7eU4GL9bIE6mEMNRIUSZILPLiREPXGfhcgoasYd1W5jEfAooE697LQr2DMw6fBdwEqHunQcl6doxrnxSQAZorHztHvyKXAFmbnF3aDkYgO82HaHGXuC"

发出消息:requestId: "477cbb82-77c0-4270-b161-555da7b6a5e2"
content: "Ow81y5qPraVcobOiZ6sCH72jJGNC0784ox5crQYP5fZ6CXoWphRdC9WW4NKSiChbci6aGutnWJbO1HlpR0FV4m9qahbWGkFI0Zr2uvMbuaj8SPpH6X"

发出消息:requestId: "98db5068-1a85-455f-8fea-4b6c8a562776"
content: "nWnNIaJFt1otie04SWoaoN08f2BOuTMyRbtFuEhj0LiYilRjeKswzqrbKlze30ZBFNIuvEz6P97rP9lM5bkuDYLv1QuKOd1wctfeF9K2RbKh6hvOfgHE5wl2xUk0B6nBFK5fI1sdj3hhoiPLApQZjGzFaSHZGVtLdM4yPBC6BhmsNCPkAo2AxcQ0iZuVEHkihs"

异步收到:requestId: "2096b54f-825c-4fdf-817e-97b3a4b99fb2"
status: 200
data: "Handled:ckp1dXcnYItdXafrURU6gJ9b5qW19rqPKLB22qlA2sHRfkSZEpmT4qi0TOAaDbM43v62svI1K6IccnlJtCjlpcu8RAdpfuO5hNBWsXpOaSGUgY4loLNlNFIDE5o7juhfCD2skV2"

异步收到:requestId: "e8c501e0-a4e2-4972-a6be-f92539141252"
status: 200
data: "Handled:ZpOz1YK6e9VOrX69xqNovUXfapY6Ito7z6LlsM6o1Vzeo1hibzvOcxAzYD8hIsOFvGAqk024XbL7yidlgPk4F9GId6ydRxzjjNdg8csxG9FdBXzzr6xuESJ"

异步收到:requestId: "477cbb82-77c0-4270-b161-555da7b6a5e2"
status: 200
data: "Handled:Ow81y5qPraVcobOiZ6sCH72jJGNC0784ox5crQYP5fZ6CXoWphRdC9WW4NKSiChbci6aGutnWJbO1HlpR0FV4m9qahbWGkFI0Zr2uvMbuaj8SPpH6X"

异步收到:requestId: "2c56fc02-5fd8-4c17-bca5-ab0def66493c"
status: 200
data: "Handled:FzoUaLvHxA0Tm7eU4GL9bIE6mEMNRIUSZILPLiREPXGfhcgoasYd1W5jEfAooE697LQr2DMw6fBdwEqHunQcl6doxrnxSQAZorHztHvyKXAFmbnF3aDkYgO82HaHGXuC"

异步收到:requestId: "98db5068-1a85-455f-8fea-4b6c8a562776"
status: 200
data: "Handled:nWnNIaJFt1otie04SWoaoN08f2BOuTMyRbtFuEhj0LiYilRjeKswzqrbKlze30ZBFNIuvEz6P97rP9lM5bkuDYLv1QuKOd1wctfeF9K2RbKh6hvOfgHE5wl2xUk0B6nBFK5fI1sdj3hhoiPLApQZjGzFaSHZGVtLdM4yPBC6BhmsNCPkAo2AxcQ0iZuVEHkihs"

  。

实现订阅发布

//TBD 。

  。

最后此篇关于【编码】如何实现一套自定义网络协议?的文章就讲到这里了,如果你想了解更多关于【编码】如何实现一套自定义网络协议?的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

58 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com