gpt4 book ai didi

ClickHouse物化视图学习总结

转载 作者:撒哈拉 更新时间:2024-12-09 02:23:25 59 4
gpt4 key购买 nike

物化视图

物化视图源表--基础数据源

创建源表,因为我们的目标涉及报告聚合数据而不是单条记录,所以我们可以解析它,将信息传递给物化视图,并丢弃实际传入的数据。这符合我们的目标并节省了存储空间,因此我们将使用Null表引擎.

CREATE DATABASE IF NOT EXISTS analytics;

CREATE TABLE analytics.hourly_data
(
    `domain_name` String,
    `event_time` DateTime,
    `count_views` UInt64
)
ENGINE = Null;

注意:可以在Null表上创建物化视图。因此,写入表的数据最终会影响视图,但原始原始数据仍将被丢弃 。

月度汇总表和物化视图

对于第一个物化视图,需要创建 Target 表(本例子中为analytics.monthly_aggregated_data),例中将按月份和域名存储视图的总和.

CREATE TABLE analytics.monthly_aggregated_data
(
    `domain_name` String,
    `month` Date,
    `sumCountViews` AggregateFunction(sum, UInt64)
)
ENGINE = AggregatingMergeTree
ORDER BY (domain_name, month);

将转发Target表上数据的物化视图如下:

CREATE MATERIALIZED VIEW analytics.monthly_aggregated_data_mv
TO analytics.monthly_aggregated_data
AS
SELECT
    toDate(toStartOfMonth(event_time)) AS month,
    domain_name,
    sumState(count_views) AS sumCountViews
FROM analytics.hourly_data
GROUP BY domain_name, month;

年度汇总表和物化视图

现在,创建第二个物化视图,该视图将链接到之前的目标表monthly_aggregated_data。 首先,创建一个新的目标表,该表将存储每个域名每年汇总的视图总和.

CREATE TABLE analytics.year_aggregated_data
(
    `domain_name` String,
    `year` UInt16,
    `sumCountViews` UInt64
)
ENGINE = SummingMergeTree()
ORDER BY (domain_name, year);

然后创建物化视图,此步骤定义级联。FROM 语句将使用monthly_aggregated_data表,这意味着数据流将是: 1.数据到达hourly_data表。 2.ClickHouse会将收到的数据转发到第一个物化视图monthly_aggregated_data 表 3.最后,步骤2中接收到的数据将被转发到 year_aggregated_data.

CREATE MATERIALIZED VIEW analytics.year_aggregated_data_mv
TO analytics.year_aggregated_data
AS
SELECT
    toYear(toStartOfYear(month)) AS year,
    domain_name,
    sumMerge(sumCountViews) as sumCountViews
FROM analytics.monthly_aggregated_data
GROUP BY domain_name, year;

注意:

在使用物化视图时,一个常见的误解是数据是从表中读取的,这不是Materialized views的工作方式;转发的数据是插入的数据块,而不是表中的最终结果.

想象一下,在这个例子中,monthly_aggregated_data中使用的引擎是一个折叠合并树(CollapsingMergeTree),转发到第二个物化视图year_aggregated_data_mv 的数据将不是折叠表的最终结果,它将转发具有正如SELECT… GROUP BY中定义的字段的数据块.

如果末正在使用CollapsingMergeTree、ReplacingMergeTree,甚至SummingMergeTree,并且计划创建级联物化视图,则需要了解此处描述的限制.

采集数据

现在是时候通过插入一些数据来测试我们的级联物化视图了

INSERT INTO analytics.hourly_data (domain_name, event_time, count_views)
VALUES ('clickhouse.com', '2019-01-01 10:00:00', 1),
       ('clickhouse.com', '2019-02-02 00:00:00', 2),
       ('clickhouse.com', '2019-02-01 00:00:00', 3),
       ('clickhouse.com', '2020-01-01 00:00:00', 6);

查询analytics.hourly_data的内容,将查不到任何记录,因为表引擎为Null,但数据已被处理 。

 SELECT * FROM analytics.hourly_data

输出:

domain_name|event_time|count_views|
-----------+----------+-----------+

结果

如果尝试查询目标表的sumCountViews字段值,将看到字段值以二进制表示(在某些终端中),因为该值不是以数字的形式存储,而是以AggregateFunction类型存储的。要获得聚合的最终结果,应该使用-Merge后缀.

通过以下查询,sumCountViews字段值无法正常显示:

SELECT sumCountViews FROM analytics.monthly_aggregated_data

输出:

sumCountViews|
-------------+
             |
             |
             |

使用 Merge后缀获取 sumCountViews 值

SELECT sumMerge(sumCountViews) as sumCountViews
FROM analytics.monthly_aggregated_data;

输出:

sumCountViews|
-------------+
           12|

在AggregatingMergeTree 中将AggregateFunction 定义为sum,因此可以使用sumMerge。当在AggregateFunction上使用函数avg时,则将使用avgMerge,以此类推.

SELECT month, domain_name, sumMerge(sumCountViews) as sumCountViews
FROM analytics.monthly_aggregated_data
GROUP BY domain_name, month

输出:

month     |domain_name   |sumCountViews|
----------+--------------+-------------+
2020-01-01|clickhouse.com|            6|
2019-01-01|clickhouse.com|            1|
2019-02-01|clickhouse.com|            5|

现在我们可以查看物化视图是否符合我们定义的目标.

现在已经将数据存储在目标表monthly_aggregated_data中,可以按月聚合每个域名的数据:

SELECT month, domain_name, sumMerge(sumCountViews) as sumCountViews
FROM analytics.monthly_aggregated_data
GROUP BY domain_name, month;

输出:

month     |domain_name   |sumCountViews|
----------+--------------+-------------+
2020-01-01|clickhouse.com|            6|
2019-01-01|clickhouse.com|            1|
2019-02-01|clickhouse.com|            5|

按年聚合每个域名的数据

SELECT year, domain_name, sum(sumCountViews)
FROM analytics.year_aggregated_data
GROUP BY domain_name, year;

输出:

year|domain_name   |sum(sumCountViews)|
----+--------------+------------------+
2019|clickhouse.com|                 6|
2020|clickhouse.com|                 6|

组合多个源表来创建单个目标表

物化视图还可以用于将多个源表组合以到一个目标表中。这对于创建类似于 UNION ALL逻辑的物化视图非常有用.

首先,创建两个代表不同指标集的源表

CREATE TABLE analytics.impressions
(
    `event_time` DateTime,
    `domain_name` String
) ENGINE = MergeTree ORDER BY (domain_name, event_time);

CREATE TABLE analytics.clicks
(
    `event_time` DateTime,
    `domain_name` String
) ENGINE = MergeTree ORDER BY (domain_name, event_time);

然后使用组合的指标集创建 Target表:

CREATE TABLE analytics.daily_overview
(
    `on_date` Date,
    `domain_name` String,
    `impressions` SimpleAggregateFunction(sum, UInt64),
    `clicks` SimpleAggregateFunction(sum, UInt64)
) ENGINE = AggregatingMergeTree ORDER BY (on_date, domain_name);

创建两个指向同一Target表的物化视图。不需要显式地包含缺少的列:

CREATE MATERIALIZED VIEW analytics.daily_impressions_mv
TO analytics.daily_overview
AS                                                
SELECT
    toDate(event_time) AS on_date,
    domain_name,
    count() AS impressions,
    0 clicks   --<<<--- 如果去掉该列,则默认为 clicks为0
FROM                                              
    analytics.impressions
GROUP BY toDate(event_time) AS on_date, domain_name;

CREATE MATERIALIZED VIEW analytics.daily_clicks_mv
TO analytics.daily_overview
AS
SELECT
    toDate(event_time) AS on_date,
    domain_name,
    count() AS clicks,
    0 impressions    --<<<---如果去掉该列,则默认为 impressions 为0
FROM
    analytics.clicks
GROUP BY toDate(event_time) AS on_date, domain_name;

现在,当插入值时,这些值将被聚合到Target表中的相应列中:

INSERT INTO analytics.impressions (domain_name, event_time)
VALUES ('clickhouse.com', '2019-01-01 00:00:00'),
       ('clickhouse.com', '2019-01-01 12:00:00'),
       ('clickhouse.com', '2019-02-01 00:00:00'),
       ('clickhouse.com', '2019-03-01 00:00:00')
;

INSERT INTO analytics.clicks (domain_name, event_time)
VALUES ('clickhouse.com', '2019-01-01 00:00:00'),
       ('clickhouse.com', '2019-01-01 12:00:00'),
       ('clickhouse.com', '2019-03-01 00:00:00')
;

查询目标表 the Target table

SELECT
    on_date,
    domain_name,
    sum(impressions) AS impressions,
    sum(clicks) AS clicks
FROM
    analytics.daily_overview
GROUP BY
    on_date,
    domain_name
;

输出:

on_date   |domain_name   |impressions|clicks|
----------+--------------+-----------+------+
2019-01-01|clickhouse.com|          2|     2|
2019-03-01|clickhouse.com|          1|     1|
2019-02-01|clickhouse.com|          1|     0|

参考链接

https://clickhouse.com/docs/en/guides/developer/cascading-materialized-views 。

AggregateFunction

聚合函数有一个实现定义的中间状态,可以序列化为AggregateFunction(...)数据类型,并通常通过物化视图存储在表中。生成聚合函数状态的常见方法是使用State后缀调用聚合函数。为了以后能获得聚合的最终结果,必须使用带有-Merge后缀的相同聚合函数.

AggregateFunction(name, types_of_arguments...) — 参数数据类型.

参数说明:

  • 聚合函数名称。如果名称对应的聚合函数鞋带参数,则还需要为其它指定参数。
  • 聚合函数参数类型。

示例 。

CREATE TABLE testdb.aggregated_test_tb
(   
    `__name__` String, 
    `count` AggregateFunction(count),
    `avg_val` AggregateFunction(avg, Float64),
    `max_val` AggregateFunction(max, Float64),
    `time_max` AggregateFunction(argMax, DateTime, Float64),
    `mid_val` AggregateFunction(quantiles(0.5, 0.9), Float64) 
) ENGINE = AggregatingMergeTree() 
ORDER BY (__name__);

备注:如果上述SQL未添加ORDER BY (__name__, create_time),执行会报类似如下错误:

SQL 错误 [42]: ClickHouse exception, code: 42, host: 192.168.88.131, port: 8123; Code: 42, e.displayText() = DB::Exception: Storage AggregatingMergeTree requires 3 to 4 parameters: 
name of column with date,
[sampling element of primary key],
primary key expression,
index granularity

创建数据源表并插入测试数据 。

CREATE TABLE testdb.test_tb 
(
    `__name__` String, 
    `create_time` DateTime, 
    `val` Float64
) ENGINE = MergeTree() 
PARTITION BY toStartOfWeek(create_time) 
ORDER BY (__name__, create_time);

INSERT INTO testdb.test_tb(`__name__`, `create_time`, `val`) VALUES
('xiaoxiao', now(), 80.5),
('xiaolin', addSeconds(now(), 10), 89.5),
('xiaohong', addSeconds(now(), 20), 90.5),
('lisi', addSeconds(now(), 30), 79.5),
('zhangshang', addSeconds(now(), 40), 60),
('wangwu', addSeconds(now(), 50), 65);

插入数据 。

使用以State后缀的聚合函数的INSERT SELECT 以插入数据--比如希望获取目标列数据均值,即avg(target_column),那么插入数据时使用的聚合函数为avgState,*State聚合函数返回状态(state),而不是最终值。换句话说,返回一个 AggregateFunction 类型的值.

INSERT INTO testdb.aggregated_test_tb (`__name__`, `count`, `avg_val`, `max_val`, `time_max`, `mid_val`)
SELECT `__name__`,
countState() AS count,
avgState(val) AS avg_val, 
maxState(val) AS max_val,
argMaxState(create_time, val) AS time_max,
quantilesState(0.5, 0.9)(val) AS `mid_val`
FROM testdb.test_tb
GROUP BY `__name__`, toStartOfMinute(create_time);

注意:SELECT语句中的字段,要么使用聚合函数调用(比如上述val字段),要么保持原字段不变(比如上述__name__字段),保持原字段不变时,该字段必须包含于GROUP BY子句中,否则会报类似如下错误:

SQL 错误 [215]: ClickHouse exception, code: 215, host: 192.168.88.131, port: 8123; Code: 215, e.displayText() = DB::Exception: Column `__name__` is not under aggregate function and not in GROUP BY (version 20.3.5.21 (official build))

查询数据 。

从AggregatingMergeTree表中查询数据时,使用GROUP BY子句和与插入数据时相同的聚合函数,但使用Merge后缀,比如插入数据时使用的聚合函数为avgState,那么查询时使用的聚合函数为avgMerge.

后缀为Merge的聚合函数接受一组状态,将它们组合在一起,并返回完整数据聚合的结果.

例如,以下两个查询返回相同的结果 。

SELECT `__name__`, 
create_time,
avgMerge(avg_val) AS avg_val, 
maxMerge(max_val) AS max_val
FROM ( 
SELECT `__name__`, 
toStartOfMinute(create_time) AS create_time,
avgState(val) AS avg_val, 
maxState(val) AS max_val
FROM testdb.test_tb
GROUP BY `__name__`, create_time
)
GROUP BY `__name__`, create_time;

SELECT `__name__`, 
toStartOfMinute(create_time) AS create_time,
avg(val) AS avg_val, 
max(val) AS max_val
FROM testdb.test_tb
GROUP BY `__name__`, create_time;

例子:

SELECT `__name__`, 
countMerge(`count`), 
avgMerge(`avg_val`), 
maxMerge(`max_val`),
argMaxMerge(`time_max`),
quantilesMerge(0.5, 0.9)(`mid_val`)
FROM testdb.aggregated_test_tb
GROUP BY `__name__`;

参考链接

https://clickhouse.com/docs/en/sql-reference/data-types/aggregatefunction 。

AggregatingMergeTree

引擎继承自MergeTree,更改了数据块合并的逻辑。ClickHouse使用一条存储了聚合函数状态组合的单条记录(在一个数据块中)替换带有相同主键(或更准确地说,用相同的排序键)的所有行 。

说明:数据块是指ClickHouse存储数据的基本单位 。

可以使用 AggregatingMergeTree 表进行增量数据聚合,包括聚合物化视图.

引擎处理以下类型的所有列:

  • AggregateFunction 。

  • SimpleAggregateFunction 。

    如果能减少有序行数,则使用AggregatingMergeTree是合适的 。

建表

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = AggregatingMergeTree()
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[TTL expr]
[SETTINGS name=value, ...]

有关请求参数的描述,参阅请求描述 。

查询语句 。

创建AggregatingMergeTree表与创建MergeTree表的子句相同.

查询和插入 。

要插入数据,使用INSERT SELECT使用aggregateState函数进行查询。从AggregatingMergeTree表中查询数据时,使用GROUP BY子句和与插入数据时相同的聚合函数,但使用Merge后缀.

在SELECT查询的结果中,AggregateFunction类型的值对所有ClickHouse输出格式都有特定于实现的二进制表示。例如,如果你可以使用SELECT查询将数据转储为TabSeparated格式,则可以使用INSERT查询将此转储重新加载.

一个物化视图示例

CREATE DATABASE testdb;

创建存放原始数据的testdb.visits表

CREATE TABLE testdb.visits
(
    StartDate DateTime64, 
    CounterID UInt64,
    Sign Nullable(Int32),
    UserID Nullable(Int32)
) ENGINE = MergeTree 
ORDER BY (StartDate, CounterID);

说明:上述StartDate DateTime64, 如果写成StartDate DateTime64 NOT NULL, 运行会报错,如下:

Expected one of: CODEC, ALIAS, TTL, ClosingRoundBracket, Comma, DEFAULT, MATERIALIZED, COMMENT, token (version 20.3.5.21 (official build))

接下来,创建一个AggregatingMergeTree表,该表将存储AggregationFunction,用于跟踪访问总数和唯一用户数.

创建一个AggregatingMergeTree 物化视图,用于监视testdb.revisits表,并使用AggregateFunction 类型:

CREATE TABLE testdb.agg_visits (
    StartDate DateTime64,
    CounterID UInt64,
    Visits AggregateFunction(sum, Nullable(Int32)),
    Users AggregateFunction(uniq, Nullable(Int32))
)
ENGINE = AggregatingMergeTree() ORDER BY (StartDate, CounterID);
SQL 错误 [70]: ClickHouse exception, code: 70, host: 192.168.88.131, port: 8123; Code: 70, e.displayText() = DB::Exception: Conversion from AggregateFunction(sum, Int32) to AggregateFunction(sum, Nullable(Int32)) is not supported: while converting source column Visits to destination column Visits: while pushing to view testdb.visits_mv (version 20.3.5.21 (official build))

CREATE TABLE testdb.agg_visits (
    StartDate DateTime64,
    CounterID UInt64,
    Visits AggregateFunction(sum, Int32),
    Users AggregateFunction(uniq, Int32)
)
ENGINE = AggregatingMergeTree() ORDER BY (StartDate, CounterID);

创建一个物化视图,从testdb.revisits填充testdb.agg_visits:

CREATE MATERIALIZED VIEW testdb.visits_mv TO testdb.agg_visits
AS SELECT
    StartDate,
    CounterID,
    sumState(Sign) AS Visits,
    uniqState(UserID) AS Users
FROM testdb.visits
GROUP BY StartDate, CounterID;

插入数据到 testdb.visits 表

INSERT INTO testdb.visits (StartDate, CounterID, Sign, UserID)
 VALUES (1667446031000, 1, 3, 4), (1667446031000, 1, 6, 3);

数据被同时插入到testdb.revisits和testdb.agg_visits中.

执行诸如 SELECT ... GROUP BY ...的语句查询物化视图test.mv_visits以获取聚合数据 。

SELECT
    StartDate,
    sumMerge(Visits) AS Visits,
    uniqMerge(Users) AS Users
FROM testdb.agg_visits
GROUP BY StartDate
ORDER BY StartDate;

输出:

StartDate          |Visits|Users|
-------------------+------+-----+
2022-11-03 11:27:11|     9|    2|

在testdb.revisits中添加另外2条记录,但这次尝试对其中一条记录使用不同的时间戳

INSERT INTO testdb.visits (StartDate, CounterID, Sign, UserID)
 VALUES (1669446031000, 2, 5, 10), (1667446031000, 3, 7, 5);

再次查询,输出如下:

StartDate          |Visits|Users|
-------------------+------+-----+
2022-11-03 11:27:11|    16|    3|
2022-11-26 15:00:31|     5|    1|

参考链接

https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/aggregatingmergetree 。

最后此篇关于ClickHouse物化视图学习总结的文章就讲到这里了,如果你想了解更多关于ClickHouse物化视图学习总结的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

59 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com