- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
在编程领域,数据结构与算法是构建高效、可靠和可扩展软件系统的基石。它们对于提升程序性能、优化资源利用以及解决复杂问题具有至关重要的作用。今天大姚给大家分享四种C#中常见的经典查找算法.
二分查找算法是一种在有序数组中查找特定元素的搜索算法.
public class 二分查找算法
{
/// <summary>
/// 二分查找算法
/// </summary>
/// <param name="arr">arr是已排序的数组</param>
/// <param name="target">target是要查找的目标值</param>
/// <returns>目标值在数组中的索引,如果未找到则返回-1</returns>
public static int BinarySearch(int[] arr, int target)
{
int left = 0; // 定义左指针
int right = arr.Length - 1; // 定义右指针
while (left <= right)
{
// 计算中间元素的索引
int mid = left + (right - left) / 2;
if (arr[mid] == target)
{
// 如果中间元素等于目标值
return mid; // 查找成功,返回索引
}
else if (arr[mid] < target)
{
// 如果目标值小于中间元素,则在左半部分查找
left = mid + 1;
}
else
{
// 如果目标值大于中间元素,则在右半部分查找
right = mid - 1;
}
}
// 未找到 target,返回-1
return -1;
}
public static void BinarySearchRun()
{
int[] arr = { 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59 }; //注意:这里的数组是已排序的数组
int target = 31; //需要要查找的目标值
int result = BinarySearch(arr, target); //调用二分查找方法
if (result == -1)
{
Console.WriteLine("元素未找到");
}
else
{
Console.WriteLine($"元素找到,索引为:{result},值为:{arr[result]}");
}
}
}
线性查找算法是一种简单的查找算法,用于在一个数组或列表中查找一个特定的元素。它从数组的第一个元素开始,逐个检查每个元素,直到找到所需的元素或搜索完整个数组。线性查找的时间复杂度为O(n),其中n是数组中的元素数量.
public static void LinearSearchRun()
{
int[] arr = { 2, 3, 4, 10, 40, 50, 100, 77, 88, 99 };
int target = 100;
int result = LinearSearch(arr, target);
// 输出结果
if (result == -1)
{
Console.WriteLine("元素未找到");
}
else
{
Console.WriteLine($"元素在索引 {result} 处找到,index = {result}");
}
}
/// <summary>
/// 线性查找函数
/// </summary>
/// <param name="arr">arr</param>
/// <param name="target">target</param>
/// <returns></returns>
public static int LinearSearch(int[] arr, int target)
{
// 遍历数组
for (int i = 0; i < arr.Length; i++)
{
// 如果找到目标值,返回其索引
if (arr[i] == target)
{
return i;
}
}
// 如果没有找到,则返回-1
return -1;
}
二叉搜索树(Binary Search Tree,简称BST)是一种节点有序排列的二叉树数据结构.
namespace HelloDotNetGuide.常见算法
{
public class 二叉搜索树算法
{
public static void BinarySearchTreeRun()
{
var bst = new BinarySearchTree();
// 插入一些值到树中
bst.Insert(50);
bst.Insert(30);
bst.Insert(20);
bst.Insert(40);
bst.Insert(70);
bst.Insert(60);
bst.Insert(80);
bst.Insert(750);
Console.WriteLine("中序遍历(打印有序数组):");
bst.InorderTraversal();
Console.WriteLine("\n");
// 查找某些值
Console.WriteLine("Search for 40: " + bst.Search(40)); // 输出: True
Console.WriteLine("Search for 25: " + bst.Search(25)); // 输出: False
Console.WriteLine("\n");
// 删除某个值
bst.Delete(50);
Console.WriteLine("删除50后:");
bst.InorderTraversal();
}
}
/// <summary>
/// 定义二叉搜索树的节点结构
/// </summary>
public class TreeNode
{
public int Value;
public TreeNode Left;
public TreeNode Right;
public TreeNode(int value)
{
Value = value;
Left = null;
Right = null;
}
}
/// <summary>
/// 定义二叉搜索树类
/// </summary>
public class BinarySearchTree
{
private TreeNode root;
public BinarySearchTree()
{
root = null;
}
#region 插入节点
/// <summary>
/// 插入新值到二叉搜索树中
/// </summary>
/// <param name="value">value</param>
public void Insert(int value)
{
if (root == null)
{
root = new TreeNode(value);
}
else
{
InsertRec(root, value);
}
}
private void InsertRec(TreeNode node, int value)
{
if (value < node.Value)
{
if (node.Left == null)
{
node.Left = new TreeNode(value);
}
else
{
InsertRec(node.Left, value);
}
}
else if (value > node.Value)
{
if (node.Right == null)
{
node.Right = new TreeNode(value);
}
else
{
InsertRec(node.Right, value);
}
}
else
{
//值已经存在于树中,不再插入
return;
}
}
#endregion
#region 查找节点
/// <summary>
/// 查找某个值是否存在于二叉搜索树中
/// </summary>
/// <param name="value">value</param>
/// <returns></returns>
public bool Search(int value)
{
return SearchRec(root, value);
}
private bool SearchRec(TreeNode node, int value)
{
// 如果当前节点为空,表示未找到目标值
if (node == null)
{
return false;
}
// 如果找到目标值,返回true
if (node.Value == value)
{
return true;
}
// 递归查找左子树或右子树
if (value < node.Value)
{
return SearchRec(node.Left, value);
}
else
{
return SearchRec(node.Right, value);
}
}
#endregion
#region 中序遍历
/// <summary>
/// 中序遍历(打印有序数组)
/// </summary>
public void InorderTraversal()
{
InorderTraversalRec(root);
}
private void InorderTraversalRec(TreeNode root)
{
if (root != null)
{
InorderTraversalRec(root.Left);
Console.WriteLine(root.Value);
InorderTraversalRec(root.Right);
}
}
#endregion
#region 删除节点
/// <summary>
/// 删除某个值
/// </summary>
/// <param name="val">val</param>
public void Delete(int val)
{
root = DeleteNode(root, val);
}
private TreeNode DeleteNode(TreeNode node, int val)
{
if (node == null)
{
return null;
}
if (val < node.Value)
{
node.Left = DeleteNode(node.Left, val);
}
else if (val > node.Value)
{
node.Right = DeleteNode(node.Right, val);
}
else
{
// 节点有两个子节点
if (node.Left != null && node.Right != null)
{
// 使用右子树中的最小节点替换当前节点
TreeNode minNode = FindMin(node.Right);
node.Value = minNode.Value;
node.Right = DeleteNode(node.Right, minNode.Value);
}
// 节点有一个子节点或没有子节点
else
{
TreeNode? temp = node.Left != null ? node.Left : node.Right;
node = temp;
}
}
return node;
}
/// <summary>
/// 找到树中的最小节点
/// </summary>
/// <param name="node"></param>
/// <returns></returns>
private TreeNode FindMin(TreeNode node)
{
while (node.Left != null)
{
node = node.Left;
}
return node;
}
#endregion
}
}
哈希查找算法是一种高效的查找算法,通过将键值映射到哈希表中的位置来实现快速访问。在C#中,哈希查找通常通过哈希表(Hashtable)或字典(Dictionary)来实现.
public class 哈希查找算法
{
/// <summary>
/// 哈希查找函数
/// </summary>
/// <param name="target">target</param>
public static void HashSearchFunctionRun(int target)
{
//创建一个字典来存储键值对
var dic = new Dictionary<int, string>();
dic.Add(1, "one");
dic.Add(2, "two");
dic.Add(3, "three");
//查找目标值是否在Dictionary中存在
//TryGetValue方法可以返回一个bool值和值,如果找到了目标值,则返回true和对应的值,否则返回false和默认值
string value;
if (dic.TryGetValue(target, out value))
{
Console.WriteLine("Found Data: " + value);
}
else
{
Console.WriteLine("Not Found Data.");
}
}
}
最后此篇关于C#常见的四种经典查找算法的文章就讲到这里了,如果你想了解更多关于C#常见的四种经典查找算法的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
新建表: create table [表名] ( [自动编号字段] int IDENTITY (1,1)&nbs
我的文件中有正在本地化的字符串。其中许多是常见的,并且已经在整个 iOS 中使用。例如。 “保存”、“加载”、“返回”、“收藏夹”、“拍照”。为了与其他应用程序和内置应用程序提供一致的用户体验,是否有
我已经学习了 Qt 的基础知识,现在对这个漂亮的库的深度感兴趣。请帮助我理解: 所有类都是从QObject派生的吗? 为什么可以在QWidget(和派生类)上绘画? return app.exec()
我在 webpack 中设置了一个自调用函数,并使用常见的 JS 来需要一些包: (function() { var $ = require("jquery"); //...my functi
我正在尝试制作一个大量使用词性标记的应用程序。但是 nltk 的 pos 标记功能对我来说似乎不符合标准 - 例如: import nltk text = "Obama delivers his fi
有没有办法处理发送到 MySQL 的常见查询以防止不必要的带宽使用? 最佳答案 选项是: 使用MySQL缓存查询 好:全自动 差:仍然需要访问数据库服务器;有一次缓存让我在一个项目中失望,花了很长时间
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 4 年前。 Improve this qu
关闭。这个问题需要debugging details .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 6年前关闭。 Improve this questio
我正在尝试调用返回 csv 文件的网络服务。因此,我调用的每个 URL 都有一个后缀,它是一个字符串,表示要生成哪个 csv。然后我想将此 csv 保存到文件中。有很多要生成,所以我从多个线程调用此类
流行手机型号支持的典型触摸点数量是多少?我在基础研究中看到低至 2 和高至 5,但我希望能够将其映射到实际手机和更好的限制! 最佳答案 两部手机的触控点数据: Galaxy S 5 LG
出于好奇 - 我知道有 LAMP - Linux、Apache、MySQL 和 PHP。但是还有哪些其他 Web 堆栈替代方案的缩写呢?像 LAMR - Linux、Apache、MySQL Ruby
我写了一个java代码(使用apache common vfs2)来上传文件到SFTP服务器。最近,我在我的服务器上引入了 PGP 安全性。现在,java 代码无法连接到该服务器。与 FileZill
由于 GLU 被认为对于现代 OpenGL (3.1+) 来说已经过时,那么使用 C/C++ 在 OpenGL 中绘制基本形状(例如椭圆或弧线/饼图)的方法是什么?令人难以置信的是,在 OpenGL
我想知道是否有最流行的 iOS 应用程序的自定义 URL 方案列表,例如 Keynote、Numbers、Pages、Evernote 等。我还想知道这些应用程序使用什么参数网址。 我需要这个的原因是
我正在使用 NDK r10d 移植 C++ myToll Linux 应用程序以在 Android 上运行。 (请注意,这不是带有 apk 的 Android 应用程序,而是从 shell 运行的实用
假设您想要使用 UML 2 部署图为在该领域没有太多知识的人可视化一个常见的 PHP 服务器应用程序。这样一个通用的应用程序可能有三个设备节点(数据库服务器、Web 服务器和客户端)和四个执行环境节点
我正在尝试运行以下代码,以找到两个人之间的共同 friend 。输入如下 A : B C D B : A C D E C : A B D E D : A B C E E : B C D 我无法在输出文
我在 Gitolite 的 manual 中找到的唯一东西在钩子(Hook)上,是: If you want to add your own hook, it's easy as long as it
具体来说,我有一个问题,在 AWS 环境中组织 AZ 故障转移的推荐方法是什么。此外,最好了解典型的 AWS 故障以组织应用程序 HA(高可用性)。 因此,应用程序架构(AWS 服务使用)如下: 它或
我正在尝试编写一个通用的 SecurePagingAndSorting 存储库,它将检查 CRUD 操作的安全性,以节省在所有 JPA 存储库中重复相同的 PreAuthorize(使用不同的权限)。
我是一名优秀的程序员,十分优秀!