gpt4 book ai didi

使用梯度下降法实现多项式回归

转载 作者:撒哈拉 更新时间:2024-09-19 00:22:58 59 4
gpt4 key购买 nike

使用梯度下降法实现多项式回归

实验目的

本实验旨在通过梯度下降法实现多项式回归,探究不同阶数的多项式模型对同一组数据的拟合效果,并分析样本数量对模型拟合结果的影响.

实验材料与方法

数据准备

  1. 生成训练样本:我们首先生成了20个训练样本,其中自变量服从均值为0,方差为1的标准正态分布。因变量由下述多项式关系加上均值为0,方差为1的误差项构成: Y=5+4X+3X2+2X3+er
  2. 数据可视化:使用Matplotlib库绘制了生成的数据点。
代码
import numpy as np
import matplotlib.pyplot as plt

# 设置随机种子以保证实验可重复性
np.random.seed(0)

# 生成20个训练样本
n_samples = 20
X = np.random.normal(0, 1, n_samples)
e_r = np.random.normal(0, 1, n_samples)  # 误差项

# 计算Y值
Y = 5 + 4 * X + 3 * X**2 + 2 * X**3 + e_r

# 使用matplotlib显示生成的数据
plt.figure(figsize=(8, 6))
plt.scatter(X, Y, color='blue', label='Actual data')
plt.title('Generated Data')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

模型定义

  1. 定义多项式回归模型:我们定义了一个MultinomialModel类,该类接受训练数据作为输入,并能够返回多项式模型的参数。类内部包括构造设计矩阵的方法、拟合数据的方法(使用梯度下降法)以及预测方法。
代码
class MultinomialModel:
    def __init__(self, degree):
        self.degree = degree
        self.coefficients = None
    
    def _design_matrix(self, X):
        """构造设计矩阵"""
        n_samples = len(X)
        design_matrix = np.ones((n_samples, self.degree + 1))
        for i in range(1, self.degree + 1):
            design_matrix[:, i] = X ** i
        return design_matrix
    
    def fit(self, X, Y, learning_rate=0.01, iterations=1000):
        """使用梯度下降法来拟合模型"""
        n_samples = len(X)
        self.coefficients = np.zeros(self.degree + 1)  # 初始化系数
        
        # 构造设计矩阵
        X_design = self._design_matrix(X)
        
        for _ in range(iterations):
            # 预测
            predictions = np.dot(X_design, self.coefficients)
            
            # 损失函数的导数
            gradient = 2 / n_samples * np.dot(X_design.T, predictions - Y)
            
            # 更新系数
            self.coefficients -= learning_rate * gradient
    
    def predict(self, X):
        """基于学习到的模型预测新的数据点"""
        X_design = self._design_matrix(X)
        return np.dot(X_design, self.coefficients)

# 使用上述定义的类
degree = 3  # 设定多项式的阶数
model = MultinomialModel(degree)

# 拟合数据
model.fit(X, Y)

# 预测
Y_pred = model.predict(X)

# 可视化拟合结果
plt.figure(figsize=(8, 6))
plt.scatter(X, Y, color='blue', label='Actual data')
plt.plot(X, Y_pred, color='red', label='Fitted curve')
plt.title('Polynomial Regression Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

模型拟合与结果展示

  1. 模型训练与预测:对于设定的不同阶数的多项式模型,使用梯度下降法进行训练,并预测数据。
  2. 结果可视化:在同一张图表中,绘制了不同阶数多项式模型的拟合曲线,同时保留原始数据点的散点图。
代码
# 继续使用之前定义的MultinomialModel类

# 使用上述定义的类
degree = 3  # 设定多项式的阶数
model = MultinomialModel(degree)

# 拟合数据
model.fit(X, Y)

# 预测
Y_pred = model.predict(X)

# 创建一个从X最小值到最大值的线性空间,用于绘制平滑的拟合曲线
X_fit = np.linspace(np.min(X), np.max(X), 100)
Y_fit = model.predict(X_fit)

# 可视化拟合结果
plt.figure(figsize=(8, 6))
plt.scatter(X, Y, color='blue', label='Actual data')
plt.plot(X_fit, Y_fit, color='red', label='Fitted curve', linewidth=2)
plt.title(f'Polynomial Regression Fit (Degree {degree})')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()


# 定义不同的多项式阶数
degrees = [1, 2, 3, 4, 5]

# 创建一个新的图形
plt.figure(figsize=(10, 8))

# 对于每个多项式阶数,拟合并绘制曲线
for degree in degrees:
    model = MultinomialModel(degree)
    model.fit(X, Y)
    
    # 创建一个从X最小值到最大值的线性空间,用于绘制平滑的拟合曲线
    X_fit = np.linspace(np.min(X), np.max(X), 100)
    Y_fit = model.predict(X_fit)
    
    plt.plot(X_fit, Y_fit, label=f'Degree {degree}')

# 绘制实际的数据点
plt.scatter(X, Y, color='blue', label='Actual data')

# 设置图例和其他细节
plt.title('Polynomial Fits of Different Degrees')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

样本数量影响分析

  1. 增加样本数量:将样本数量从20增加到100,并重复以上步骤,观察模型拟合效果的变化。
代码
# 生成100个训练样本
n_samples = 100
X = np.random.normal(0, 1, n_samples)
e_r = np.random.normal(0, 1, n_samples)  # 误差项

# 计算Y值
Y = 5 + 4 * X + 3 * X**2 + 2 * X**3 + e_r

# 使用matplotlib显示生成的数据
plt.figure(figsize=(8, 6))
plt.scatter(X, Y, color='blue', label='Actual data')
plt.title('Generated Data with 100 samples')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

# 定义不同的多项式阶数
degrees = [1, 2, 3, 4, 5]

# 创建一个新的图形
plt.figure(figsize=(10, 8))

# 对于每个多项式阶数,拟合并绘制曲线
for degree in degrees:
    model = MultinomialModel(degree)
    model.fit(X, Y)
    
    # 创建一个从X最小值到最大值的线性空间,用于绘制平滑的拟合曲线
    X_fit = np.linspace(np.min(X), np.max(X), 100)
    Y_fit = model.predict(X_fit)
    
    plt.plot(X_fit, Y_fit, label=f'Degree {degree}')

# 绘制实际的数据点
plt.scatter(X, Y, color='blue', label='Actual data')

# 设置图例和其他细节
plt.title('Polynomial Fits of Different Degrees with 100 samples')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

实验结果与讨论

结果展示

  • 在初始阶段,我们观察到了不同阶数多项式模型对20个样本数据的拟合情况。随着多项式阶数的增加,模型逐渐从欠拟合状态转变为可能的过拟合状态,特别是在高阶数时,模型试图更紧密地跟随数据点的趋势。
  • 当样本数量增加到100时,模型的表现变得更加稳定。高阶多项式模型虽然仍表现出一定的复杂度,但由于有更多的数据支持,过拟合的风险有所减小。模型能够更好地捕捉到数据的真实趋势。

讨论

  • 模型复杂度与拟合效果:随着多项式阶数的提高,模型的复杂度增加,这使得模型能够更好地逼近训练数据。然而,过高阶数也可能导致过拟合,即模型在训练数据上表现优异但在未知数据上表现不佳。
  • 样本数量的影响:增加样本数量有助于提高模型的泛化能力。更多的样本意味着模型可以学习到更多样化的特征,从而减少过拟合的风险。

结论

本次实验展示了如何使用梯度下降法实现多项式回归,并探讨了不同阶数及样本数量对模型拟合结果的影响。实验结果表明,在选择合适的多项式阶数以及确保有足够的训练样本的情况下,多项式回归模型可以有效地拟合非线性数据.

附录:完整代码

import numpy as np
import matplotlib.pyplot as plt

# 设置随机种子以保证实验可重复性
np.random.seed(0)

# 生成20个训练样本
n_samples = 20
X = np.random.normal(0, 1, n_samples)
e_r = np.random.normal(0, 1, n_samples)  # 误差项

# 计算Y值
Y = 5 + 4 * X + 3 * X**2 + 2 * X**3 + e_r

# 使用matplotlib显示生成的数据
plt.figure(figsize=(8, 6))
plt.scatter(X, Y, color='blue', label='Actual data')
plt.title('Generated Data')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

class MultinomialModel:
    def __init__(self, degree):
        self.degree = degree
        self.coefficients = None
    
    def _design_matrix(self, X):
        """构造设计矩阵"""
        n_samples = len(X)
        design_matrix = np.ones((n_samples, self.degree + 1))
        for i in range(1, self.degree + 1):
            design_matrix[:, i] = X ** i
        return design_matrix
    
    def fit(self, X, Y, learning_rate=0.01, iterations=1000):
        """使用梯度下降法来拟合模型"""
        n_samples = len(X)
        self.coefficients = np.zeros(self.degree + 1)  # 初始化系数
        
        # 构造设计矩阵
        X_design = self._design_matrix(X)
        
        for _ in range(iterations):
            # 预测
            predictions = np.dot(X_design, self.coefficients)
            
            # 损失函数的导数
            gradient = 2 / n_samples * np.dot(X_design.T, predictions - Y)
            
            # 更新系数
            self.coefficients -= learning_rate * gradient
    
    def predict(self, X):
        """基于学习到的模型预测新的数据点"""
        X_design = self._design_matrix(X)
        return np.dot(X_design, self.coefficients)

# 使用上述定义的类
degree = 3  # 设定多项式的阶数
model = MultinomialModel(degree)

# 拟合数据
model.fit(X, Y)

# 预测
Y_pred = model.predict(X)

# 可视化拟合结果
plt.figure(figsize=(8, 6))
plt.scatter(X, Y, color='blue', label='Actual data')
plt.plot(X, Y_pred, color='red', label='Fitted curve')
plt.title('Polynomial Regression Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

# 继续使用之前定义的MultinomialModel类

# 使用上述定义的类
degree = 3  # 设定多项式的阶数
model = MultinomialModel(degree)

# 拟合数据
model.fit(X, Y)

# 预测
Y_pred = model.predict(X)

# 创建一个从X最小值到最大值的线性空间,用于绘制平滑的拟合曲线
X_fit = np.linspace(np.min(X), np.max(X), 100)
Y_fit = model.predict(X_fit)

# 可视化拟合结果
plt.figure(figsize=(8, 6))
plt.scatter(X, Y, color='blue', label='Actual data')
plt.plot(X_fit, Y_fit, color='red', label='Fitted curve', linewidth=2)
plt.title(f'Polynomial Regression Fit (Degree {degree})')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

# 定义不同的多项式阶数
degrees = [1, 2, 3, 4, 5]

# 创建一个新的图形
plt.figure(figsize=(10, 8))

# 对于每个多项式阶数,拟合并绘制曲线
for degree in degrees:
    model = MultinomialModel(degree)
    model.fit(X, Y)
    
    # 创建一个从X最小值到最大值的线性空间,用于绘制平滑的拟合曲线
    X_fit = np.linspace(np.min(X), np.max(X), 100)
    Y_fit = model.predict(X_fit)
    
    plt.plot(X_fit, Y_fit, label=f'Degree {degree}')

# 绘制实际的数据点
plt.scatter(X, Y, color='blue', label='Actual data')

# 设置图例和其他细节
plt.title('Polynomial Fits of Different Degrees')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

# 生成100个训练样本
n_samples = 100
X = np.random.normal(0, 1, n_samples)
e_r = np.random.normal(0, 1, n_samples)  # 误差项

# 计算Y值
Y = 5 + 4 * X + 3 * X**2 + 2 * X**3 + e_r

# 使用matplotlib显示生成的数据
plt.figure(figsize=(8, 6))
plt.scatter(X, Y, color='blue', label='Actual data')
plt.title('Generated Data with 100 samples')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

# 定义不同的多项式阶数
degrees = [1, 2, 3, 4, 5]

# 创建一个新的图形
plt.figure(figsize=(10, 8))

# 对于每个多项式阶数,拟合并绘制曲线
for degree in degrees:
    model = MultinomialModel(degree)
    model.fit(X, Y)
    
    # 创建一个从X最小值到最大值的线性空间,用于绘制平滑的拟合曲线
    X_fit = np.linspace(np.min(X), np.max(X), 100)
    Y_fit = model.predict(X_fit)
    
    plt.plot(X_fit, Y_fit, label=f'Degree {degree}')

# 绘制实际的数据点
plt.scatter(X, Y, color='blue', label='Actual data')

# 设置图例和其他细节
plt.title('Polynomial Fits of Different Degrees with 100 samples')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

实验中使用的代码主要包括以下几个部分:

  1. 数据生成:使用numpy库生成服从特定分布的训练样本。
  2. 模型定义与实现:定义MultinomialModel类,并实现梯度下降法训练模型的功能。
  3. 结果可视化:使用matplotlib库绘制数据点和拟合曲线。
  4. 分析样本数量的影响:增加样本数量,并观察拟合结果的变化。

最后此篇关于使用梯度下降法实现多项式回归的文章就讲到这里了,如果你想了解更多关于使用梯度下降法实现多项式回归的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

59 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com