- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
二叉搜索树(BST,Binary Search Tree) 。
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树
int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13},
二叉搜索树/二叉查找树也称二叉排序树,因为二叉排序树的中序遍历结果是升序 。
二叉搜索树的左子树一定小于根,右子树一定大于根,结合定义递归子树可以得到 。
左子树的最右节点是左子树的最大节点,右子树的最右节点是右子树的最大节点. 。
左子树的最左节点是左子树的最小节点,右子树的最左节点是右子树的最小节点. 。
二叉搜索树的最小节点是左子树的最左节点,最大节点是右子树的最右节点 。
实际情况很少直接使用搜索二叉树,多是根据搜索二叉树的高效搜索特性,衍生出更为实用的高阶数据结构,例如平衡二叉搜索树(AVL树,红黑树)等... 。
还有如:门禁系统,车库系统等... 。
还有如:通讯录 。
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能.
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。 但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:$log_2 N$ ($log_2 N$) 最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:$\frac{N}{2}$ ($\frac{N}{2}$) 。
特别地 。
同样一组数据,插入顺序不同,得到的二叉树也不同 。
当插入的值已存在时,插入失败(不考虑multi) 。
首先查找元素是否在二叉搜索树中,如果不存在,则返回. 。
否则,根据树的结构定义,可以得到3种情况 。
看起来有待删除节点有4中情况,实际情况
要删除的结点无孩子结点时,直接删除 。
要删除的结点只有左孩子或右孩子时,将左孩子或右孩子给父亲 。
要删除的结点可能是父亲的左孩子或者是右孩子,有2*2种情况(要删除的结点是父亲的左孩子或右孩子) 。
左右孩子都是空时,也满足情况,因此可以合并无孩子结点情况 。
在1的前提下,恰好是根节点,也是一种情况(让另外一个孩子做根即可) 。
要删除的结点有左右孩子(子树)时,需要找一个既要比左子树大也要比右子树小的节点来补上. 。
根据递归定义得知,只有左孩子的最右结点和右孩子的最左结点符合条件,二选一即可 。
当选择使用右孩子的最左结点时,有以下三种情况(与是不是根无关) 。
要删除的结点的右子树的最小结点恰好是要删除结点的右孩子. 。
要删除的结点的右子树的最小结点没有右孩子. 。
要删除的结点的右子树的最小结点有右孩子 。
(上图举例分析) 。
template<class K>
struct BSTreeNode {
BSTreeNode<K>* _left;
BSTreeNode<K>* _right;
K _key;
BSTreeNode(K key)
:_key(key),_left(nullptr),_right(nullptr)
{}
};
template<class K>
class BSTree {
public:
using Node = BSTreeNode<K>;
BSTree() = default;
BSTree(const BSTree& bst) {
_root = Copy(bst._root);
}
BSTree<K>& operator=(BSTree bst) { //拷贝复用
swap(_root,bst.root);
return *this;
}
~BSTree() {
Destroy(_root);
}
public:
bool Insert(const K& key) {
if (_root == nullptr) {
_root = new Node(key);
_root->_key = key;
return true;
}
BSTreeNode<K>* cur = _root;
BSTreeNode<K>* parent = _root;
while (cur) {
if (key < cur->_key) {
parent = cur;
cur = cur->_left;
}
else if (key > cur->_key) {
parent = cur;
cur = cur->_right;
}
else {
return false;
}
}
//走出循环,说明树中不存在该节点, 可以插入
cur = new BSTreeNode<K>(key);
if (key < parent->_key) {
parent->_left = cur;
}
else {
parent->_right = cur;
}
return true;
}
bool Find(const K& key) {
if (_root == nullptr) return false;
Node* cur = _root;
while (cur) {
if (key < cur->_key) {
cur = cur->_left;
}
else if (key > cur->_key) {
cur = cur->_right;
}
else {
return true;
}
}
// 从循环出来,说明没找着
return false;
}
bool Erase(const K& key) {
if (_root == nullptr) return false;
Node* cur = _root;
Node* parent = _root;
while (cur) {
if (key < cur->_key) {
parent = cur;
cur = cur->_left;
}
else if (key > cur->_key) {
parent = cur;
cur = cur->_right;
}
else {
//没有左孩子
if (cur->_left == nullptr) {
if (cur == _root) {
_root = cur->_right;
}
else if (parent->_left == cur) {
parent->_left = cur->_right;
}
else {
parent->_right = cur->_right;
}
delete cur;
return true;
}
//没有右孩子
else if (cur->_right == nullptr) {
if (cur == _root) {
_root = cur->_left;
}
if (parent->_left == cur) {
parent->_left = cur->_left;
}
else {
parent->_right = cur->_left;
}
delete cur;
return true;
}
//有左右孩子
else {
//找右孩子(子树)的最小结点/最左结点
Node* rightMin = cur->_right; //明确不为空
Node* rightMinParent = cur;
while (rightMin->_left) {
rightMinParent = rightMin;
rightMin = rightMin->_left;
}
// 删除右子树最小结点有3种情况(与是不是根无关)
//1. 要删除的结点右子树最小结点恰好是自己的右孩子.
//2. 要删除的结点的右孩子的左子树的最左结点没有右孩子.
//3. 要删除的结点的右孩子的左子树的最左结点有右孩子.
//结论解析: 复用删除单结点代码,进行删除rightMin即可
K tmp = rightMin->_key;
Erase(rightMin->_key); //只能从根开始遍历,性能损失,但是二分查找很快,损失不大(理想情况,BST只学习用)
cur->_key = tmp;
return true;
} //有左右孩子的情况
} //找到了_继续处理的过程
}//循环找的过程
//循环结束,说明没找到
return false;
}//Erase [end]
void InOrder() {
_InOrder(_root);
std::cout << std::endl;
}
bool InsertR(const K& key) {
_InsertR(_root, key);
}
bool EraseR(const K& key) {
return _EraseR(_root,key);
}
private:
//此处返回值不能使用指针引用,虽然一定情况下可以使用(不推荐),至少目前不能引用空值.
Node* Copy(const Node* root) {
if (root == nullptr) {
return nullptr;
}
Node* newRoot = new Node(root->_key);
newRoot->_left = Copy(root->_left);
newRoot->_right = Copy(root->_right);
return newRoot;
}
//用不用引用无所谓,好习惯做到底
//(析构子节点时,父节点两个成员会成为垂悬指针,但是接下来父亲也要析构了,指针变量也随之回收)
void Destroy(Node*&root) {
if (root == nullptr) {
return ;
}
Destroy(root->_left);
Destroy(root->_right);
std::cout<<root->_key<<" ";
delete root; //释放加自动置空
}
//练习递归+引用 -- 代码更加简洁
bool _EraseR(Node*& root, const K&key) {
//走到空,说明没找到,返回false
if (root == nullptr) {
return false;
}
//大于走右边,小于走左边
if (key > root->_key) {
return _EraseR(root->_right,key);
}
else if(key<root->_key) {
return _EraseR(root->_left,key);
}
//找到了
else {
if (root->_left == nullptr) {
Node* del = root;
root = root->_right;
delete del;
return true;
}
else if (root->_right == nullptr) {
Node* del = root;
root = root->_left;
delete del;
return true;
}
//有左右孩子
else {
Node* leftMax = root->_left;
//找左子树最大结点
while (leftMax->_right) {
leftMax = leftMax->_right;
}
std::swap(root->_key, leftMax->_key);
return _EraseR(root->_left, key); //直接从左孩子开始递归删除.
}
}
}
//练习递归+引用指针的玩法,仅练习
bool _InsertR(Node*& root, const K& key) { //引用的妙用,跨栈帧直接访问实参
if (root == nullptr) {
root == new Node(key);
return true;
}
if (key == root->_key) return false;
return (key > root->_key) ? _InsertR(root->_right, key) : _InsertR(root->_left, key);
}
void _InOrder(Node* root) {
if (root == nullptr) return;
_InOrder(root->_left);
std::cout << root->_key << " ";
_InOrder(root->_right);
}
private:
BSTreeNode<K>* _root = nullptr;
};
void test() {
int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
BSTree<int> bst;
for (int i : a) {
bst.Insert(i);
}
bst.InOrder();
////Find
//std::cout << std::boolalpha << bst.Find(8) << std::endl; //true
//std::cout << std::boolalpha << bst.Find(9) << std::endl; //false
BSTree<int> cp(bst);
cp.InOrder();
//测试两孩子的三种情况即可
bst.Erase(8); //1. 要删除的结点的右子树的最小结点恰好是要删除结点的右孩子.
bst.Erase(10); //2. 要删除的结点的右子树的最小结点没有右孩子
bst.Insert(5); //构造有右孩子的最小结点
bst.Erase(3); //3. 要删除的结点的右子树的最小结点有右孩子
bst.Erase(4);
bst.Erase(7);
bst.Erase(1);
bst.Erase(14);
bst.Erase(13);
bst.Erase(6);
bst.Erase(5);
bst.InOrder();
//禁止显式调用析构函数 --> 双重释放
//bst.~BSTree();
//cp.~BSTree();
}
int main() {
test();
}
最后此篇关于BST二叉搜索树BinarySearchTreeC++实现(递归/非递归)的文章就讲到这里了,如果你想了解更多关于BST二叉搜索树BinarySearchTreeC++实现(递归/非递归)的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
在 Windows 世界中,什么是正确的名称。具有导出函数的老式 C++ DLL?不是 COM DLL,也不是 .NET DLL。我们以前通过调用 LoadLibrary() 和 GetProcAdd
目前我正在使用javaEE7,我有一个场景如下。在我的 JSF Web 应用程序中,我有一个事件监听器(不是 JSF 事件),当事件调用时,它会执行某些操作,然后将这些信息更新到我的 Web 应用程序
这不是 AJAX 请求/响应回调问题... 我正在使用 Dojo 1.5 构建网格。我正在尝试 dojo.connect具有功能的扩展/收缩按钮。我的问题是 grid.startup()在创建实际 D
非 Webkit Opera 是 very specific在某些功能中,因此通常通过 JavaScript 检测到 the following way . 但是,Opera Next 几乎是 Goo
我已查看以下链接中给出的所有日志,但未能找到 IP 地址: https://developer.couchbase.com/documentation/server/3.x/admin/Misc/Tr
我有一个命令行程序,它根据一组源文件生成一个我想在我的 Android gradle 构建 (A) 中使用的 jar 文件。这个命令行程序只是将一个 jar 文件存储在磁盘上的一个目录中。 我如何创建
下面的 htaccess 命令将所有非 www 转移到 http www RewriteEngine On RewriteCond %{HTTP_HOST} !^www\. RewriteRule ^
我正在使用自定义链接器脚本将内核镜像分为两部分。第一个是普通代码和数据,第二个是初始化代码和不再需要时将被丢弃的数据。初始化部分也不像内核本身那样在地址空间之间共享,因此如果 fork() 仍然存在(
这个问题在这里已经有了答案: Several unary operators in C and C++ (3 个答案) What is the "-->" operator in C++? (29
假设我有一个类设置如下: class A { public: virtual void foo() { printf("default implementation\n"); } }; c
#include using namespace std; int main(int argc, char *argv[]) { int i=-5; while(~(i)) {
近期,百度搜索引擎变化无常,很多企业站、行业站、门户站、论坛等站点遭到了降权,特别是比比贴分类信息网直接遭到了拔毛,这对于广大站长来说是一种打击,也是各个企业、行业的打击。 至今,很多网站已经恢复
我现在正在使用 IBM TPM v1332 + IBM TSS v1470 并尝试将一些基本关键字/密码存储到 TPM 上的非 volatile 内存中。我找到了两种方法。一种是创建一个密封对象并使用
我的 PHP 脚本中有一个正则表达式,如下所示: /(\b$term|$term\b)(?!([^)/iu 这与 $term 中包含的单词匹配,只要前后有单词边界并且它不在 HTML 标记内即可。 但
我想显示用户名称地址(请参阅 www.ipchicken.com ),但我唯一能找到的是 IP 地址。我尝试了反向查找,但也没有用: IPAddress ip = IPAddress.Parse(th
只有 UI 线程能够显示到屏幕上,还是其他线程也可以这样做? 最佳答案 不,您只能直接从 UI 线程访问 UI,但您可以编码来自其他线程的结果,例如使用 Control.Invoke 或 contro
我正在使用现代 Excel 滚动条(不是旧的 ActiveX 类型,即开发人员 > 插入 > 表单控件 > 滚动条)并且想检测它的值何时更改。我找不到有关此类对象的更改事件的任何信息。您可以在单击时分
当我使用这段代码时 IE 6 确实正确使用了指定的样式表,但所有其他浏览器在应该使用基本上声明的样式表时会忽略这两种样式表,如果您不是 IE,请使用此样式表。 有什么想法吗? 最佳答案 n
我想指定 2 mssql 表之间的关系。 付款类别和付款。 paymentcategory.id 加入 payout.category 列。 在 payout.json 模型中 我指定为外键:id,
我正在尝试制作非 volatile UDF,但似乎不可能。因此,这是我非常简单的test-UDF: Option Explicit Dim i As Integer Sub Main() i = 0
我是一名优秀的程序员,十分优秀!