- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
本文介绍基于Python语言,读取Excel表格文件数据,以其中某一列数据的值为标准,对于这一列数据处于指定范围的所有行,再用其他几列数据的数值,加以数据筛选与剔除;同时,对筛选前、后的数据分别绘制若干直方图,并将结果数据导出保存为一个新的Excel表格文件的方法.
首先,我们来明确一下本文的具体需求。现有一个Excel表格文件,在本文中我们就以.csv格式的文件为例;其中,如下图所示,这一文件中有一列(在本文中也就是days这一列)数据,我们将其作为基准数据,希望首先取出days数值处于0至45、320至365范围内的所有样本(一行就是一个样本),进行后续的操作.
其次,对于取出的样本,再依据其他4列(在本文中也就是blue_dif、green_dif、red_dif与inf_dif这4列)数据,将这4列数据不在指定数值区域内的行删除。在这一过程中,我们还希望绘制在数据删除前、后,这4列(也就是blue_dif、green_dif、red_dif与inf_dif这4列)数据各自的直方图,一共是8张图。最后,我们还希望将删除上述数据后的数据保存为一个新的Excel表格文件.
知道了需求,我们就可以撰写代码。本文所用的代码如下所示.
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 12 07:55:40 2023
@author: fkxxgis
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
original_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Main_Over_NIR.csv"
# original_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/TEST.csv"
result_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Main_Over_NIR_New.csv"
df = pd.read_csv(original_file_path)
blue_original = df[(df['blue_dif'] >= -0.08) & (df['blue_dif'] <= 0.08)]['blue_dif']
green_original = df[(df['green_dif'] >= -0.08) & (df['green_dif'] <= 0.08)]['green_dif']
red_original = df[(df['red_dif'] >= -0.08) & (df['red_dif'] <= 0.08)]['red_dif']
inf_original = df[(df['inf_dif'] >= -0.1) & (df['inf_dif'] <= 0.1)]['inf_dif']
mask = ((df['days'] >= 0) & (df['days'] <= 45)) | ((df['days'] >= 320) & (df['days'] <= 365))
range_min = -0.03
range_max = 0.03
df.loc[mask, 'blue_dif'] = df.loc[mask, 'blue_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'green_dif'] = df.loc[mask, 'green_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'red_dif'] = df.loc[mask, 'red_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'inf_dif'] = df.loc[mask, 'inf_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x], p =[0.9, 0.1]))
df = df.dropna()
blue_new = df[(df['blue_dif'] >= -0.08) & (df['blue_dif'] <= 0.08)]['blue_dif']
green_new = df[(df['green_dif'] >= -0.08) & (df['green_dif'] <= 0.08)]['green_dif']
red_new = df[(df['red_dif'] >= -0.08) & (df['red_dif'] <= 0.08)]['red_dif']
inf_new = df[(df['inf_dif'] >= -0.1) & (df['inf_dif'] <= 0.1)]['inf_dif']
plt.figure(0)
plt.hist(blue_original, bins = 50)
plt.figure(1)
plt.hist(green_original, bins = 50)
plt.figure(2)
plt.hist(red_original, bins = 50)
plt.figure(3)
plt.hist(inf_original, bins = 50)
plt.figure(4)
plt.hist(blue_new, bins = 50)
plt.figure(5)
plt.hist(green_new, bins = 50)
plt.figure(6)
plt.hist(red_new, bins = 50)
plt.figure(7)
plt.hist(inf_new, bins = 50)
df.to_csv(result_file_path, index=False)
首先,我们通过pd.read_csv函数从指定路径的.csv文件中读取数据,并将其存储在名为df的DataFrame中.
接下来,通过一系列条件筛选操作,从原始数据中选择满足特定条件的子集。具体来说,我们筛选出了在blue_dif、green_dif、red_dif与inf_dif这4列中数值在一定范围内的数据,并将这些数据存储在名为blue_original、green_original、red_original和inf_original的新Series中,这些数据为我们后期绘制直方图做好了准备.
其次,创建一个名为mask的布尔掩码,该掩码用于筛选满足条件的数据。在这里,它筛选出了days列的值在0到45之间或在320到365之间的数据.
随后,我们使用apply函数和lambda表达式,对于days列的值在0到45之间或在320到365之间的行,如果其blue_dif、green_dif、red_dif与inf_dif这4列的数据不在指定范围内,那么就将这列的数据随机设置为NaN,p =[0.9, 0.1]则是指定了随机替换为NaN的概率。这里需要注意,如果我们不给出p =[0.9, 0.1]这样的概率分布,那么程序将依据均匀分布的原则随机选取数据.
最后,我们使用dropna函数,删除包含NaN值的行,从而得到筛选处理后的数据。其次,我们依然根据这四列的筛选条件,计算出处理后的数据的子集,存储在blue_new、green_new、red_new和inf_new中。紧接着,使用Matplotlib创建直方图来可视化原始数据和处理后数据的分布;这些直方图被分别存储在8个不同的图形中.
代码的最后,将处理后的数据保存为新的.csv文件,该文件路径由result_file_path指定.
运行上述代码,我们将得到8张直方图,如下图所示。且在指定的文件夹中看到结果文件.
至此,大功告成.
最后此篇关于Python按条件筛选、剔除表格数据并绘制剔除前后的直方图的文章就讲到这里了,如果你想了解更多关于Python按条件筛选、剔除表格数据并绘制剔除前后的直方图的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我有一个充满体素的世界,假设我的世界是 320*320*96 体素。我的想法是将整个世界加载到我的视频卡的内存中,这样在将新的“ block ”传输到 GPU 时就不会损失性能。为显示体素世界而生成的
我不知道如何告诉 libgdx 在透明贴花后面绘制绿色球体。 这是我的问题的示例图片: 贴花创建:前两个参数是宽度和高度,最后一个标志是透明与否。 Decal.newDecal(count * (GU
我有 vector ,我想检索一个包含所有条目的 vector ,这些条目在所有输入 vector 中的任何地方都不重复。 #include int main() { std::vector a
我正在尝试为网站设置代码块的样式。容器 div 设置为垂直和水平溢出。问题是当它水平溢出时,斑马条纹背景颜色被剔除。我也尝试过使用背景图片,但它也剔除了它。为什么会这样?我该如何解决? 谢谢。 图片:
我应该在调用 Canvas 绘制方法之前剔除元素还是让 Canvas 处理剔除。我是否应该实现如下逻辑: if(circle.x+circle.radius>=0 || circle.x-circle
我刚刚发现 Azure Blob 存储上有 100 GB 的日志文件/失败请求日志,这些日志文件多年来一直在累积。是否有管理它们的工具或技术 - 目录结构很复杂,因此它不像按日期排序那么简单(我使用
我是一名优秀的程序员,十分优秀!