- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
代码检查项目,需要存储每一步检查的中间结果,最终把结果汇总并写入文件中 。
在中间结果的存储中 。
在权衡了不同方案后,我决定采用缓存来存储中间结果。接下来,我将探讨 Python 中可用缓存组件.
决定选择缓存,那么python中都有哪些类型的缓存呢?
functools.lru_cache
)这是最简单的一种缓存方法,适用于小规模的数据缓存。使用 functools.lru_cache 可以对函数结果进行缓存.
from functools import lru_cache
@lru_cache(maxsize=128)
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result
diskcache
)如果缓存的数据较大,或者需要跨进程共享缓存,可以使用文件系统缓存库,例如 diskcache.
import diskcache as dc
cache = dc.Cache('/tmp/mycache')
@cache.memoize(expire=3600)
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result
对于需要跨多个应用实例共享缓存的数据,可以使用 Redis 这样的分布式缓存系统.
import redis
import pickle
r = redis.StrictRedis(host='localhost', port=6379, db=0)
def expensive_function(param1, param2):
key = f"{param1}_{param2}"
cached_result = r.get(key)
if cached_result:
return pickle.loads(cached_result)
result = # 进行一些耗时的操作
r.set(key, pickle.dumps(result), ex=3600) # 设置缓存过期时间为1小时
return result
如果只是简单的小规模缓存,lru_cache 足够;如果需要持久化或分布式缓存,可以考虑使用 diskcache 或 Redis;如果使用了 Web 框架,使用框架自带的缓存功能会更方便.
兼顾速度和成本以及实现的复杂度,最终决定使用内存缓存,在 Python 中,内存缓存组件有许多选择,每种都有其特定的优点和适用场景。以下是一些常见的内存缓存组件:
functools.lru_cache
lru_cache 是 Python 标准库中的一个装饰器,用于缓存函数的返回结果,基于最近最少使用(LRU)策略.
from functools import lru_cache
@lru_cache(maxsize=128)
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result
cachetools
cachetools 是一个第三方库,提供了多种缓存策略,包括 LRU、LFU、TTL(基于时间的缓存)等.
from cachetools import LRUCache, cached
cache = LRUCache(maxsize=100)
@cached(cache)
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result
django.core.cache
如果使用 Django 框架,Django 自带了缓存框架,支持多种缓存后端,包括内存缓存.
在 settings.py 中配置内存缓存:
CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
'LOCATION': 'unique-snowflake',
}
}
Flask-Caching
如果使用 Flask 框架,Flask-Caching 插件可以方便地实现内存缓存.
from flask import Flask
from flask_caching import Cache
app = Flask(__name__)
cache = Cache(app, config={'CACHE_TYPE': 'simple'})
@app.route('/expensive')
@cache.cached(timeout=60)
def expensive_function():
# 进行一些耗时的操作
return result
requests_cache
requests_cache 是一个专门用于缓存 HTTP 请求的库,支持多种缓存后端,包括内存缓存.
import requests
import requests_cache
requests_cache.install_cache('demo_cache', backend='memory', expire_after=3600)
response = requests.get('https://api.example.com/data')
dogpile.cache
dogpile.cache 是一个更高级的缓存库,提供了灵活的缓存后端和缓存失效策略.
from dogpile.cache import make_region
region = make_region().configure(
'dogpile.cache.memory',
expiration_time=3600
)
@region.cache_on_arguments()
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result
joblib.Memory
joblib.Memory 常用于科学计算和数据处理领域,用于缓存函数的计算结果.
from joblib import Memory
memory = Memory(location='/tmp/joblib_cache', verbose=0)
@memory.cache
def expensive_function(param1, param2):
# 进行一些耗时的操作
return result
根据具体需求和使用场景选择合适的内存缓存组件。对于简单的缓存需求,可以使用 functools.lru_cache 或 cachetools。对于 Web 应用,django.core.cache 和 Flask-Caching 是不错的选择。对于 HTTP 请求缓存,可以使用 requests_cache。对于科学计算,joblib.Memory 是一个好选择.
我的项目是一个命令行执行的项目,综合考量最终决定选择cachetools 。
cachetools
pip install cachetools
from cachetools import LRUCache
from cachetools import Cache
from siada.cr.logger.logger import logger
class CacheUtils:
"""
缓存工具类
"""
def __init__(self, cache: Cache = None):
self.cache = cache if cache else LRUCache(maxsize=100)
def get_value(self, cache_key: str):
value = self.cache.get(cache_key, None)
if value is not None:
logger.info(f"Cache hit for key: {cache_key}")
else:
logger.info(f"Cache miss for key: {cache_key}")
return value
def set_key_value(self, cache_key: str, value):
self.cache[cache_key] = value
logger.info(f"Set cache key: {cache_key} with value: {value}")
def set_key_list(self, cache_key: str, value):
v = self.cache.get(cache_key, None)
if v is not None:
v.append(value)
else:
self.cache[cache_key] = [value]
def clear_cache(self):
self.cache.clear()
# TODO 如果后续生成过程改为多线程并发,需考虑数据竞争问题
cache = CacheUtils()
我还将定期分享:
最新互联网资讯:让你时刻掌握行业动态.
AI前沿新闻:紧跟技术潮流,不断提升自我.
技术分享与职业发展:助你在职业生涯中走得更远、更稳.
程序员生活趣事:让你在忙碌的工作之余找到共鸣与乐趣.
关注回复【1024】惊喜等你来拿! 。
点击查看惊喜 。
最后此篇关于10分钟掌握Python缓存的文章就讲到这里了,如果你想了解更多关于10分钟掌握Python缓存的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!