- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
一个系统中不同层面数据访问速度不一样,以计算机为例,CPU、内存和磁盘这三层的访问速度从几十 ns 到 100ns,再到几 ms,性能的差异很大,如果每次 CPU 处理数据时都要到磁盘读取数据,系统运行速度会大大降低。 所以,计算机系统中,默认有两种缓存: (1)CPU 里面的末级缓存,即 LLC,用来缓存内存中的数据,避免每次从内存中存取数据。 (2)内存中的高速页缓存,即 page cache,用来缓存磁盘中的数据,避免每次从磁盘中存取数据。 在一个层次化的系统中,缓存一定是一个快速子系统,数据存在缓存中时,能避免每次从慢速子系统中存取数据。对应到互联网应用来说,Redis 就是快速子系统,而数据库就是慢速子系统了。 Redis 是一个独立的系统软件,如果应用程序想使用 Redis 缓存,就需要增加相应的代码。所以,我们也把 Redis 称为旁路缓存,也就是说,读取缓存、读取数据库和更新缓存的操作都需要在应用程序中来完成。 Redis 缓存按照是否接受写请求,分为只读缓存和读写缓存两种类型,只读缓存能加速读请求,而读写缓存可以同时加速读写请求。读写缓存又分为同步直写和异步写回,可以根据业务需求在保证性能和保证数据可靠性之间进行选择.
缓存的容量终究是有限的,需要按一定规则淘汰出去,为新来的数据腾出空间,提高缓存命中率,提升应用的访问性能。缓存容量的规划通常是需要结合应用数据实际访问特征和成本开销来综合考虑的,建议把缓存容量设置为总数据量的 15% 到 30%,兼顾访问性能和内存空间开销。设置容量命令(如4gb):CONFIG SET maxmemory 4gb 8种淘汰策略:noeviction、volatile-random、volatile-ttl、volatile-lru、volatile-lfu、allkeys-lru、allkeys-random、allkeys-lfu 大体分为两类,noeviction(不淘汰数据),缓存被写满了,再有写请求时 Redis 不再提供服务,直接返回错误。另外7种是一类,按照一定范围对缓存数据进行淘汰,对设置过期时间的数据进行淘汰,和对所有数据进行淘汰。分类如图: 具体策略如下: (1)volatile-ttl: 根据过期时间的先后进行删除,越早过期的越先被删除。 (2)volatile-rando: 在设置了过期时间的键值对中,进行随机删除。 (3)volatile-lru: 使用 LRU 算法筛选设置了过期时间的键值对。 (4)volatile-lfu: 使用 LFU 算法选择设置了过期时间的键值对。 (5)allkeys-random: 从所有键值对中随机选择并删除数据。 (6)allkeys-lru: 使用 LRU 算法在所有数据中进行筛选。 (7)allkeys-lfu: 使用 LFU 算法在所有数据中进行筛选.
LRU 算法全称 Least Recently Used,按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。LRU 会把所有的数据组织成一个链表,链表的头和尾分别表示 MRU 端和 LRU 端,分别代表最近最常使用的数据和最近最不常用的数据。 举个栗子:数据 20 和 3 被访问后,它们在链表中的位置移动到了 MRU 端,LRU 算法选择删除数据时,都是从 LRU 端开始,所以当新数据15被写入时,LRU 端的数据5被删除。LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。 所以,在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响,具体实现原理是 Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构 RedisObject 中的 lru 字段记录),在需要选择淘汰的数据时,Redis首先会随机选择N个数据将它们作为一个候选集合,然后比较他们的lru字段,将lru字段最小的数据淘汰掉。N 可以通过命令设置:CONFIG SET maxmemory-samples 100 当再次淘汰时,Redis会再挑选一些lru字段比候选集合中最小lru字段还要小的键值对,将它们放入候选集,如果候选集的数据的个数达到了 maxmemory-sample 配置的个数,Redis就开始将lru字段值最小的数据淘汰 。
与 LRU 策略相比,LFU 策略中会从两个维度来筛选并淘汰数据:一是,数据访问的时效性(访问时间离当前时间的远近);二是,数据的被访问次数。就是在 LRU 策略基础上,为每个数据增加了一个计数器,来统计访问次数。淘汰数据时,首先会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出缓存。如果两个数据的访问次数相同,再比较这两个数据的访问时效性,把距离上一次访问时间更久的数据淘汰出缓存。 具体实现是把原来 24bit 大小的 lru 字段,又进一步拆分成了两部分:ldt 值(lru 字段的前 16bit,表示数据的访问时间戳)、counter 值(lru 字段的后 8bit,表示数据的访问次数)。但是 counter 只有 8bit,记录的最大值是 255,显然不能因对数据成千上万次的访问。实际 LFU 策略实现时,数据访问并不是简单的 counter 值加 1 的计数规则,而是采用了一个更优化的计数规则。 每当数据被访问一次时,首先,用计数器当前的值乘以配置项 lfu_log_factor 再加 1,再取其倒数,得到一个 p 值;然后,把这个 p 值和一个取值范围在(0,1)间的随机数 r 值比大小,只有 p 值大于 r 值时,计数器才加 1,通过设置不同的 lfu_log_factor 配置项,来控制计数器值增加的速度。以下是计算方式部分代码(baseval当前值)和 lfu_log_factor 设置不同值的变化情况:
double r = (double)rand()/RAND_MAX;
...
double p = 1.0/(baseval*server.lfu_log_factor+1);
if (r < p) counter++;
正是因为使用了非线性递增的计数器方法,即使缓存数据的访问次数成千上万,LFU 策略也可以有效地区分不同的访问次数,从而进行合理的数据筛选。从刚才的表中,我们可以看到,当 lfu_log_factor 取值为 10 时,百、千、十万级别的访问次数对应的 counter 值已经有明显的区分了,所以,我们在应用 LFU 策略时,一般可以将 lfu_log_factor 取值为 10。 有些数据在短时间内被大量访问后就不会再被访问了,按访问次数筛选时,这些数据会被留存在缓存中,但不会提升缓存命中率。为此,Redis 在实现 LFU 策略时,还设计了一个 counter 值的衰减机制。通过配置衰减因子 lfu_decay_time 来控制访问次数的衰减。 具体操作是计算当前时间和数据最近一次访问时间的差值,换算成分钟单位,再除以 lfu_decay_time 值,就是数据 counter 要衰减的值。lfu_decay_time 值越大,相应的衰减值会变小,衰减效果也会减弱。所以,如果业务应用中有短时高频访问的数据的话,建议把 lfu_decay_time 值设置为 1,它们不再被访问后,会较快地衰减它们的访问次数,尽早把它们从缓存中淘汰出去,避免缓存污染.
最后此篇关于(四)Redis缓存应用、淘汰机制的文章就讲到这里了,如果你想了解更多关于(四)Redis缓存应用、淘汰机制的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我阅读了有关 JSR 107 缓存 (JCache) 的内容。 我很困惑:据我所知,每个 CPU 都管理其缓存内存(无需操作系统的任何帮助)。 那么,为什么我们需要 Java 缓存处理程序? (如果C
好吧,我是 jQuery 的新手。我一直在这里和那里搞乱一点点并习惯它。我终于明白了(它并不像某些人想象的那么难)。因此,鉴于此链接:http://jqueryui.com/sortable/#dis
我正在使用 Struts 2 和 Hibernate。我有一个简单的表,其中包含一个日期字段,用于存储有关何时发生特定操作的信息。这个日期值显示在我的 jsp 中。 我遇到的问题是hibernate更
我有点不确定这里发生了什么,但是我试图解释正在发生的事情,也许一旦我弄清楚我到底在问什么,就可能写一个更好的问题。 我刚刚安装了Varnish,对于我的请求时间来说似乎很棒。这是一个Magneto 2
解决 Project Euler 的问题后,我在论坛中发现了以下 Haskell 代码: fillRow115 minLength = cache where cache = ((map fill
我正试图找到一种方法来为我网络上的每台计算机缓存或存储某些 python 包。我看过以下解决方案: pypicache但它不再被积极开发,作者推荐 devpi,请参见此处:https://bitbuc
我想到的一个问题是可以从一开始就缓存网络套接字吗?在我的拓扑中,我在通过双 ISP 连接连接到互联网的 HAProxy 服务器后面有 2 个 Apache 服务器(带有 Google PageSpee
我很难说出不同缓存区域 (OS) 之间的区别。我想简要解释一下磁盘\缓冲区\交换\页面缓存。他们住在哪里?它们之间的主要区别是什么? 据我了解,页面缓存是主内存的一部分,用于存储从 I/O 设备获取的
1.题目 请你为最不经常使用(LFU)缓存算法设计并实现数据结构。 实现 LFUCache 类: LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象 in
1.题目 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: ① LRUCache(int capacity) 以正整数作为容量 capacity
我想在访问该 View 时关闭某些页面的缓存。它适用于简单查询模型对象的页面。 好像什么时候 'django.middleware.cache.FetchFromCacheMiddleware', 启
documents为 ExePackage element state Cache属性的目的是 Whether to cache the package. The default is "yes".
我知道 docker 用图层存储每个图像。如果我在一台开发服务器上有多个用户,并且每个人都在运行相同的 Dockerfile,但将镜像存储为 user1_myapp . user2 将其存储为 use
在 Codeigniter 中没有出现缓存问题几年后,我发现了一个问题。我在其他地方看到过该问题,但没有适合我的解决方案。 例如,如果我在 View 中更改一些纯 html 文本并上传新文件并按 F5
我在 Janusgraph 文档中阅读了有关 Janusgraph Cache 的内容。关于事务缓存,我几乎没有怀疑。我在我的应用程序中使用嵌入式 janusgrah 服务器。 如果我只对例如进行读取
我想知道是否有来自终端的任何命令可以用来匹配 Android Studio 中执行文件>使缓存无效/重新启动的使用。 谢谢! 最佳答案 According to a JetBrains employe
我想制作一个 python 装饰器来内存函数。例如,如果 @memoization_decorator def add(a, b, negative=False): print "Com
我经常在 jQuery 事件处理程序中使用 $(this) 并且从不缓存它。如果我愿意的话 var $this = $(this); 并且将使用变量而不是构造函数,我的代码会获得任何显着的额外性能吗?
是的,我要说实话,我不知道varnish vcl,我可以解决一些基本问题,但是我不太清楚,这就是为什么我遇到问题了。 我正在尝试通过http请求设置缓存禁止,但是该请求不能通过DNS而是通过 Varn
在 WP 站点上加载约 4000 个并发用户时遇到此问题。 这是我的配置: F5 负载均衡器 ---> Varnish 4,8 核,32 Gb RAM ---> 9 个后端,4 个核,每个 16 RA
我是一名优秀的程序员,十分优秀!