- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
假设你有一家理发店,已经记录了过去一年中所有顾客的头发长度和发型偏好的数据。现在你想从这些数据中提取一些主要的信息,比如顾客最常选择的发型类型,以及不同发型之间的相关性等。这对于你未来开展有针对性的营销活动很有帮助.
具体来说,我们可以将每个顾客的发型偏好用一个多维向量来表示,每一维度对应一种发型类型的喜好程度(比如评分1-5分)。这样,所有顾客就形成了一个海量的、高维的数据集.
这时候,我们可以对这个数据集进行主成分分析(PCA)。PCA的核心就是找到数据的主要特征向量,即那些能够最大程度解释数据方差的方向向量.
例如,假设经过PCA分析,发现主要有两个显著的特征向量
沿着这两个特征向量方向投影,就可以非常准确地还原出原始的高维数据.
这意味着,尽管原始数据有很多维度(发型类型),但是顾客的实际偏好可以用"时尚发型"和"保守发型"这两个主成分来概括和解释.
利用这两个主要特征向量,你可以
所以,通过PCA分析得到的特征向量,可以帮助我们从高维复杂的数据中提取出主要的信息,发现数据背后的内在结构和群体特征,从而指导后续的决策.
一个主成分分析(PCA)的具体计算过程示例。我们继续用理发店的发型偏好数据作为例子.
假设我们有5个顾客,每个顾客对5种发型(A,B,C,D,E)的喜好程度用1-5分评分,数据如下
顾客1: [5, 4, 2, 1, 3]
顾客2: [4, 5, 1, 2, 3]
顾客3: [2, 1, 5, 4, 3]
顾客4: [1, 2, 4, 5, 2]
顾客5: [3, 3, 3, 3, 3]
我们的目标是找到能最大程度解释这些数据方差的主要特征向量。计算步骤如下
具体计算
[2 1 -1 -2 0 ]
[1 2 -2 -1 0 ]
[-1 -2 2 1 0 ]
[-2 -1 1 2 -1 ]
[0 0 0 0 0 ]
[3.2 0.8 -0.8 -0.8 -0.8]
[0.8 3.2 -0.8 -0.8 -0.8]
[-0.8 -0.8 3.2 0.8 0.8]
[-0.8 -0.8 0.8 3.2 0.8]
[-0.8 -0.8 0.8 0.8 0.8]
计算Σ的特征值和对应特征向量(略去具体过程): 特征值1 = 6.828, 对应特征向量v1 = [0.456, 0.456, -0.456, -0.456, -0.364] 特征值2 = 2.172, 对应特征向量v2 = [0.556, -0.282, -0.282, 0.718, 0.166] ... 。
由于前两个特征值最大,所以选取v1和v2作为主成分 。
v1对应"时尚发型"的主成分, v2主要对应"保守发型" 。
通过将原始5维数据投影到由v1和v2张成的2维空间,就能很好地概括原始数据的主要模式和差异。 通过矩阵运算来计算每个数据点在v1和v2方向上的投影分量.
原始的5维数据为X = (x1, x2, x3, x4, x5),其中x1-x5分别是顾客对5种发型的评分.
现在我们想将X投影到由v1和v2张成的2维平面上,可以通过下面的矩阵运算: X' = [v1 v2]T * X 。
其中
具体运算就是
通过这样的矩阵投影运算,我们就能将任意一个原始5维数据X,映射到一个二维坐标点(x1',x2')上.
不同顾客对应的二维坐标点(x1',x2')分布在2D平面上,散点分布的模式就能很好地展示
这种将原始高维数据投影到主成分2维平面的方法,我们既降低了维度,又能很好地保留和展示数据中的主要模式和差异信息,这正是PCA的精髓所在.
这个例子展示了如何通过PCA的数学计算过程,从复杂数据中发现主要的特征向量,并利用它们提取主成分信息.
最后此篇关于主成分分析(PCA)介绍的文章就讲到这里了,如果你想了解更多关于主成分分析(PCA)介绍的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我尝试用 PCA 构建一个定向边界框。在图片中您可以看到我的结果: 红点:点云 蓝色向量:PCA 分量 我尝试将点投影到向量上,以获得最小值、最大值和平均值。 但是我现在如何定义我的盒子呢?有什么想法
我们如何将 PCA 应用于一维数组? double[][] data = new double [1][600]; PCA pca = new PCA(data, 20); data = pca.ge
我知道PCA和ICA都用于降维,并且在PCA中主成分是正交的(不一定独立),但在ICA中它们是独立的。有人能澄清一下什么时候使用 ICA 而不是 PCA 更好吗? 最佳答案 ICA 不是一种降维技术。
我正在使用 scikit-learning 做一些降维任务。 我的训练/测试数据采用 libsvm 格式。它是一个有 50 万列的大型稀疏矩阵。 我使用 load_svmlight_file 函数加载
我一直在尝试使用 PCA 进行降维。我目前有一个大小为 (100, 100) 的图像,我正在使用一个由 140 个 Gabor 滤波器组成的滤波器组,其中每个滤波器都会给我一个响应,这又是一个 (10
我使用以下简单代码在具有 10 个特征的数据框上运行 PCA: pca = PCA() fit = pca.fit(dfPca) pca.explained_variance_ratio_ 的结果显示
我正在使用 scikit-learn PCA查找具有大约 20000 个特征和 400 多个样本的数据集的主要成分。 但是,与Orange3 PCA相比应该使用 scikit-learn PCA,我得
Sklearn PCA 是 pca.components_ 的 loadings?我很确定是这样,但我正在尝试遵循一篇研究论文,但我从他们的加载中得到了不同的结果。我在 sklearn 文档中找不到它
我有一个包含 50 多个变量的数据框 data,我正在尝试使用 caret 包在 R 中执行 PCA。 library(caret) library(e1071) trans <- preProces
我正在使用 PCA 来降低 N 维数据集的维数,但我想增强对大异常值的稳健性,因此我一直在研究 Robust PCA 代码。 对于传统的 PCA,我使用的是 python 的 sklearn.deco
我正在降低 Spark DataFrame 的维度与 PCA带有 pyspark 的模型(使用 spark ml 库)如下: pca = PCA(k=3, inputCol="features", o
我在 matlab 和 python 中生成相同的矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13
概述 主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维和特征提取技术,用于将高维数据转换为低维的特征空间。其目标是通过线性变换将原始特征转化为
目录 计算过程 投影分量计算 假设你有一家理发店,已经记录了过去一年中所有顾客的头发长度和发型偏好的数据。现在你想从这些数据中提取一些主要的信息,比如顾客最常
我正在考虑使用 PCA(TruncatedSVD) 来减少我的稀疏矩阵的维数。 我将我的数据拆分为训练和测试拆分。 X_train , X_test, y_train, y_test = train_
我有来自四个群体、四个处理和三个重复的个体数据集。每个个体仅在一个群体、处理和重复组合中。我对每个人进行了四次测量。我想对每个种群、底物和重复组合的这些测量进行 PCA。 我知道如何对所有个体进行 P
在考虑均值时,数字 1 和 2 背后的直觉是什么?这将如何影响性能和准确性? 1号: pca = decomposition.PCA(n_components=4) X_centere
我正在使用来自 here 的输入数据(见第 3.1 节)。 我正在尝试使用 scikit-learn 重现它们的协方差矩阵、特征值和特征向量。但是,我无法重现数据源中显示的结果。我也在别处看到过这个输
我要做的事情如下:我有一套 Vektors v1-vn对于这些,我需要协方差矩阵(我在做 pca 时得到的)。我还需要协方差矩阵的特征值和特征向量。我按降序对特征值进行排序,然后根据相应的特征值对特征
给定 http://docs.opencv.org/modules/core/doc/operations_on_arrays.html PCA 应该可以通过传递一个矩阵来初始化。 cv::Mat m
我是一名优秀的程序员,十分优秀!