- VisualStudio2022插件的安装及使用-编程手把手系列文章
- pprof-在现网场景怎么用
- C#实现的下拉多选框,下拉多选树,多级节点
- 【学习笔记】基础数据结构:猫树
在这篇文章中,我将展示如何利用 Gradio 的热重载模式快速构建一个功能齐全的 AI 应用。但在进入正题之前,让我们先了解一下什么是重载模式以及 Gradio 为什么要采用自定义的自动重载逻辑。如果您已熟悉 Gradio 并急于开始构建,请直接跳转到第三部分构建文档分析应用.
简而言之,重载模式可以在不重启 Gradio 服务器的情况下,自动引入您源代码中的最新更改。如果这听起来还有些模糊,不妨继续阅读.
Gradio 是一个广受欢迎的 Python 库,专门用于创建交互式机器学习应用。开发者可以完全在 Python 中设计 UI 布局,并嵌入一些 Python 逻辑来响应 UI 事件。如果您已经掌握了 Python 基础,那么学习 Gradio 将会非常轻松。如果您对 Gradio 还不太熟悉,建议您查看这个快速入门指南.
通常,Gradio 应用像运行任何其他 Python 脚本一样启动,只需执行 python app.py(Gradio 代码文件可以任意命名)。这会启动一个 HTTP 服务器,渲染您的应用 UI 并响应用户操作。如果需要修改应用,通常会停止服务器(通常使用 Ctrl + C),编辑源文件后重新运行脚本.
开发过程中频繁停止和重启服务器会造成明显的延迟。如果能有一种方式能自动更新代码变更并即刻测试新思路,那将大为便利.
这正是 Gradio 的重载模式的用武之地。您只需运行 gradio app.py 而不是 python app.py,即可在重载模式下启动应用! 。
Gradio 应用通常与 uvicorn(一个 Python Web 框架的异步服务器)一同运行。尽管 Uvicorn 提供了自动重载功能,但 Gradio 出于以下原因自行实现了重载逻辑:
if gr.NO_RELOAD:
代码块,您可以利用它标记不需重载的代码部分。这种做法只有在 Gradio 实现了自定义重载逻辑的情况下才可行。接下来,我将展示如何利用 Gradio 的重载模式迅速开发一个 AI 应用.
本应用将允许用户上传文档图片并提出问题,随后以自然语言形式获得答案。我们将利用免费的 Hugging Face 推理 API,您可以在自己的电脑上轻松操作,无需 GPU! 。
首先,让我们在名为 app.py 的文件中输入以下代码,并通过执行 gradio app.py 在重载模式下启动它:
import gradio as gr
demo = gr.Interface(lambda x: x, "text", "text")
if __name__ == "__main__":
demo.launch()
这会创建以下简单的用户界面.
鉴于我希望用户能够上传图像文件及其问题,我将输入组件更改为 gr.MultimodalTextbox()。注意用户界面是如何立即更新的! 。
虽然这个用户界面已经可以工作,但我认为如果输入文本框位于输出文本框下方会更合适。我可以通过使用 Blocks API 来实现这一点,并且我还通过添加占位符文本来定制输入文本框,以引导用户.
现在 UI 已经令人满意,我将开始实现 chat_fn 的逻辑.
我将使用 Hugging Face 的推理 API,因此我需要从 huggingface_hub 包中导入 InferenceClient(预装在 Gradio 中)。我将使用 impira/layouylm-document-qa 模型来回答用户的问题,然后使用 HuggingFaceH4/zephyr-7b-beta 大语言模型提供自然语言回答.
from huggingface_hub import InferenceClient
client = InferenceClient()
def chat_fn(multimodal_message):
question = multimodal_message["text"]
image = multimodal_message["files"][0]
answer = client.document_question_answering(image=image, question=question, model="impira/layoutlm-document-qa")
answer = [{"answer": a.answer, "confidence": a.score} for a in answer]
user_message = {"role": "user", "content": f"Question: {question}, answer: {answer}"}
message = ""
for token in client.chat_completion(messages=[user_message],
max_tokens=200,
stream=True,
model="HuggingFaceH4/zephyr-7b-beta"):
if token.choices[0].finish_reason is not None:
continue
message += token.choices[0].delta.content
yield message
这是我们的应用演示! 。
我还会添加一个系统消息,以便大语言模型保持回答简短,不包括原始置信度分数。为避免每次更改时都重新实例化 InferenceClient,我将其放在不需重载的代码块中.
if gr.NO_RELOAD:
client = InferenceClient()
system_message = {
"role": "system",
"content": """
You are a helpful assistant.
You will be given a question and a set of answers along with a confidence score between 0 and 1 for each answer.
You job is to turn this information into a short, coherent response.
For example:
Question: "Who is being invoiced?", answer: {"answer": "John Doe", "confidence": 0.98}
You should respond with something like:
With a high degree of confidence, I can say John Doe is being invoiced.
Question: "What is the invoice total?", answer: [{"answer": "154.08", "confidence": 0.75}, {"answer": "155", "confidence": 0.25}
You should respond with something like:
I believe the invoice total is $154.08 but it can also be $155.
"""}
这是我们演示的现在情况!系统消息确实帮助保持了机器人的回答简短而不包含长的小数.
作为最终改进,我将在页面上添加一个 Markdown 标题:
在本文中,我使用 Gradio 和 Hugging Face 推理 API 开发了一个实用的 AI 应用。从开发初期,我就不确定最终产品会是什么样子,所以能够即时重新加载 UI 和服务器逻辑让我能迅速尝试各种想法。整个应用的开发过程大约只用了一个小时! 。
如果您想了解此演示的完整代码,请访问这个 Space 应用! 。
英文原文: https://huggingface.co/blog/gradio-reload 。
原文作者: Freddy Boulton 。
译者: Luke 。
最后此篇关于使用Gradio的“热重载”模式快速开发AI应用的文章就讲到这里了,如果你想了解更多关于使用Gradio的“热重载”模式快速开发AI应用的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我想要类似于以下伪代码的东西: while input is not None and timer = 5: print "took too long" else: print inp
如何将 MainEngine Observable 转换为 Cold?来自这个例子: public IObservable MainEngine { get
自从手表被发明以来,表盘的方圆之争就始终没有停下来过,在漫长的岁月中,无论是方形还是圆形表盘,人们都为其寻找到足够多的设计元素,让其肆意成长,这种生机与活力后来也延续到了智能手表上,在2014年,这
我正在学习 CUDA,试图解决一些标准问题。例如,我正在使用以下代码求解二维扩散方程。但我的结果与标准结果不同,我无法弄清楚。 //kernel definition __global__ void
我的 Web 应用程序使用 native dll 来实现其部分功能(其位置在 PATH 中提供)。一切正常,直到我对 WAR 进行更改并且 JBoss 热部署此 WAR。此时dll已经找不到了,需要手
我看到这个问题here 。这是关于实现每个发出的项目的延迟。这是根据accepted answer如何实现的: Observable.zip(Observable.range(1, 5) .g
我最近一直在进行冷迁移...这意味着我无法在进行迁移时从应用程序级别读取/写入数据库(维护页面)。 这样就不会因为更改结构而发生错误,而且如果负载很大,我也不希望 mysql 在迁移过程中崩溃。 我的
我是一名优秀的程序员,十分优秀!