- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章Python实现的拟合二元一次函数功能示例【基于scipy模块】由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
本文实例讲述了Python实现的拟合二元一次函数功能。分享给大家供大家参考,具体如下:
背景:
使用scipy拟合一元二次函数.
参考:
HYRY Studio-《用Python做科学计算》 。
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
# -*- coding:utf-8 -*-
#! python3
import
numpy as np
from
scipy.optimize
import
leastsq
import
pylab as pl
def
func(x,p):
"""
数组拟合函数
"""
A,k,theta
=
p
return
A
*
(x
-
k)
*
*
2
+
theta
def
residuals(p,y,x):
"""
残差
"""
return
y
-
func(x,p)
x
=
np.linspace(
0
,
2
,
100
)
A,k,theta
=
10.
,
1
,
2.
#真实数据参数
y0
=
func(x,[A,k,theta])
#真实数据
y1
=
y0
+
2
*
np.random.randn(
len
(x))
#加入噪声序列
p0
=
[
7.
,
0.2
,
1.
]
plsq
=
leastsq(residuals,p0,args
=
(y1,x))
print
(
"真实参数:"
,[A,k,theta])
print
(
"拟合参数:"
,plsq[
0
])
#试验数据拟合后的参数
pl.plot(x,y0,label
=
"real"
)
pl.plot(x,y1,label
=
"real+noise"
)
pl.plot(x,func(x,plsq[
0
]),label
=
"fitting"
)
pl.legend()
pl.show()
|
结果:
(貌似这里的求解方法用了智能算法,因为每次的结果都有细小差异。具体资料没见到,以后有精力再找) 。
真实参数: [10.0, 1, 2.0] 拟合参数: [ 10.83391995 0.98950039 1.63356065] 。
希望本文所述对大家Python程序设计有所帮助.
原文链接:https://blog.csdn.net/u011702002/article/details/78076985 。
最后此篇关于Python实现的拟合二元一次函数功能示例【基于scipy模块】的文章就讲到这里了,如果你想了解更多关于Python实现的拟合二元一次函数功能示例【基于scipy模块】的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
gnuplot 中拟合函数的正确方法是什么 f(x)有下一个表格吗? f(x) = A*exp(x - B*f(x)) 我尝试使用以下方法将其拟合为任何其他函数: fit f(x) "data.txt
(1)首先要建立数据集 ? 1
测量显示一个信号,其形式类似于具有偏移量和因子的平方根函数。如何找到系数并在一个图中绘制原始数据和拟合曲线? require(ggplot2) require(nlmrt) # may be thi
我想将以下函数拟合到我的数据中: f(x) = Offset+Amplitudesin(FrequencyT+Phase), 或根据 Wikipedia : f(x) = C+alphasin(ome
我正在尝试使用与此工具相同的方法在 C# 中拟合 Akima 样条曲线:https://www.mycurvefit.com/share/4ab90a5f-af5e-435e-9ce4-652c95c
问题:开放层适合 map ,只有在添加特征之后(视觉),我该如何避免这种情况? 我在做这个 第 1 步 - 创建特征 var feature = new ol.Feature({...}); 第 2
我有一个数据变量,其中包含以下内容: [Object { score="2.8", word="Blue"}, Object { score="2.8", word="Red"}, Objec
我正在尝试用中等大小的 numpy float 组来填充森林 In [3]: data.shape Out[3]: (401125, 5) [...] forest = forest.fit(data
我想用洛伦兹函数拟合一些数据,但我发现当我使用不同数量级的参数时拟合会出现问题。 这是我的洛伦兹函数: function [ value ] = lorentz( x,x0,gamma,amp )
我有一些数据,我希望对其进行建模,以便能够在与数据相同的范围内获得相对准确的值。 为此,我使用 polyfit 来拟合 6 阶多项式,由于我的 x 轴值,它建议我将其居中并缩放以获得更准确的拟合。 但
我一直在寻找一种方法来使数据符合 beta 二项分布并估计 alpha 和 beta,类似于 VGAM 库中的 vglm 包的方式。我一直无法找到如何在 python 中执行此操作。有一个 scipy
我将 scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) 函数与
在过去的几天里,我一直在尝试使用 python 绘制圆形数据,方法是构建一个范围从 0 到 2pi 的圆形直方图并拟合 Von Mises 分布。我真正想要实现的是: 具有拟合 Von-Mises 分
我有一个简单的循环,它在每次迭代中都会创建一个 LSTM(具有相同的参数)并将其拟合到相同的数据。问题是迭代过程中需要越来越多的时间。 batch_size = 10 optimizer = opti
我有一个 Python 系列,我想为其直方图拟合密度。问题:是否有一种巧妙的方法可以使用 np.histogram() 中的值来实现此结果? (请参阅下面的更新) 我目前的问题是,我执行的 kde 拟
我有一个简单的 keras 模型(正常套索线性模型),其中输入被移动到单个“神经元”Dense(1, kernel_regularizer=l1(fdr))(input_layer) 但是权重从这个模
我正在尝试解决 Boston Dataset 上的回归问题在random forest regressor的帮助下.我用的是GridSearchCV用于选择最佳超参数。 问题一 我是否应该将 Grid
使用以下函数,可以在输入点 P 上拟合三次样条: def plotCurve(P): pts = np.vstack([P, P[0]]) x, y = pts.T i = np.aran
我有 python 代码可以生成数字 x、y 和 z 的三元组列表。我想使用 scipy curve_fit 来拟合 z= f(x,y)。这是一些无效的代码 A = [(19,20,24), (10,
我正在尝试从 this answer 中复制代码,但是我在这样做时遇到了问题。我正在使用包 VGAM 中的gumbel 发行版和 fitdistrplus . 做的时候出现问题: fit = fi
我是一名优秀的程序员,十分优秀!