- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章解决Keras TensorFlow 混编中 trainable=False设置无效问题由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
这是最近碰到一个问题,先描述下问题:
首先我有一个训练好的模型(例如vgg16),我要对这个模型进行一些改变,例如添加一层全连接层,用于种种原因,我只能用TensorFlow来进行模型优化,tf的优化器,默认情况下对所有tf.trainable_variables()进行权值更新,问题就出在这,明明将vgg16的模型设置为trainable=False,但是tf的优化器仍然对vgg16做权值更新 。
以上就是问题描述,经过谷歌百度等等,终于找到了解决办法,下面我们一点一点的来复原整个问题.
trainable=False 无效 。
首先,我们导入训练好的模型vgg16,对其设置成trainable=False 。
1
2
3
|
from
keras.applications
import
VGG16
import
tensorflow as tf
from
keras
import
layers
|
1
2
3
4
|
# 导入模型
base_mode
=
VGG16(include_top
=
False
)
# 查看可训练的变量
tf.trainable_variables()
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
[<tf.Variable
'block1_conv1/kernel:0'
shape
=
(
3
,
3
,
3
,
64
) dtype
=
float32_ref>,
<tf.Variable
'block1_conv1/bias:0'
shape
=
(
64
,) dtype
=
float32_ref>,
<tf.Variable
'block1_conv2/kernel:0'
shape
=
(
3
,
3
,
64
,
64
) dtype
=
float32_ref>,
<tf.Variable
'block1_conv2/bias:0'
shape
=
(
64
,) dtype
=
float32_ref>,
<tf.Variable
'block2_conv1/kernel:0'
shape
=
(
3
,
3
,
64
,
128
) dtype
=
float32_ref>,
<tf.Variable
'block2_conv1/bias:0'
shape
=
(
128
,) dtype
=
float32_ref>,
<tf.Variable
'block2_conv2/kernel:0'
shape
=
(
3
,
3
,
128
,
128
) dtype
=
float32_ref>,
<tf.Variable
'block2_conv2/bias:0'
shape
=
(
128
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv1/kernel:0'
shape
=
(
3
,
3
,
128
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv1/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv2/kernel:0'
shape
=
(
3
,
3
,
256
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv2/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv3/kernel:0'
shape
=
(
3
,
3
,
256
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv3/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv1/kernel:0'
shape
=
(
3
,
3
,
256
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv2/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv2/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv3/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv3/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv2/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv2/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv3/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv3/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block1_conv1_1/kernel:0'
shape
=
(
3
,
3
,
3
,
64
) dtype
=
float32_ref>,
<tf.Variable
'block1_conv1_1/bias:0'
shape
=
(
64
,) dtype
=
float32_ref>,
<tf.Variable
'block1_conv2_1/kernel:0'
shape
=
(
3
,
3
,
64
,
64
) dtype
=
float32_ref>,
<tf.Variable
'block1_conv2_1/bias:0'
shape
=
(
64
,) dtype
=
float32_ref>,
<tf.Variable
'block2_conv1_1/kernel:0'
shape
=
(
3
,
3
,
64
,
128
) dtype
=
float32_ref>,
<tf.Variable
'block2_conv1_1/bias:0'
shape
=
(
128
,) dtype
=
float32_ref>,
<tf.Variable
'block2_conv2_1/kernel:0'
shape
=
(
3
,
3
,
128
,
128
) dtype
=
float32_ref>,
<tf.Variable
'block2_conv2_1/bias:0'
shape
=
(
128
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv1_1/kernel:0'
shape
=
(
3
,
3
,
128
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv1_1/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv2_1/kernel:0'
shape
=
(
3
,
3
,
256
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv2_1/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv3_1/kernel:0'
shape
=
(
3
,
3
,
256
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv3_1/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv1_1/kernel:0'
shape
=
(
3
,
3
,
256
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv1_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv2_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv2_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv3_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv3_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv1_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv1_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv2_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv2_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv3_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv3_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>]
|
1
2
3
4
|
# 设置 trainable=False
# base_mode.trainable = False似乎也是可以的
for
layer
in
base_mode.layers:
layer.trainable
=
False
|
设置好trainable=False后,再次查看可训练的变量,发现并没有变化,也就是说设置无效 。
# 再次查看可训练的变量 tf.trainable_variables() 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
[<tf.Variable
'block1_conv1/kernel:0'
shape
=
(
3
,
3
,
3
,
64
) dtype
=
float32_ref>,
<tf.Variable
'block1_conv1/bias:0'
shape
=
(
64
,) dtype
=
float32_ref>,
<tf.Variable
'block1_conv2/kernel:0'
shape
=
(
3
,
3
,
64
,
64
) dtype
=
float32_ref>,
<tf.Variable
'block1_conv2/bias:0'
shape
=
(
64
,) dtype
=
float32_ref>,
<tf.Variable
'block2_conv1/kernel:0'
shape
=
(
3
,
3
,
64
,
128
) dtype
=
float32_ref>,
<tf.Variable
'block2_conv1/bias:0'
shape
=
(
128
,) dtype
=
float32_ref>,
<tf.Variable
'block2_conv2/kernel:0'
shape
=
(
3
,
3
,
128
,
128
) dtype
=
float32_ref>,
<tf.Variable
'block2_conv2/bias:0'
shape
=
(
128
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv1/kernel:0'
shape
=
(
3
,
3
,
128
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv1/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv2/kernel:0'
shape
=
(
3
,
3
,
256
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv2/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv3/kernel:0'
shape
=
(
3
,
3
,
256
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv3/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv1/kernel:0'
shape
=
(
3
,
3
,
256
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv2/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv2/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv3/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv3/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv2/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv2/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv3/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv3/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block1_conv1_1/kernel:0'
shape
=
(
3
,
3
,
3
,
64
) dtype
=
float32_ref>,
<tf.Variable
'block1_conv1_1/bias:0'
shape
=
(
64
,) dtype
=
float32_ref>,
<tf.Variable
'block1_conv2_1/kernel:0'
shape
=
(
3
,
3
,
64
,
64
) dtype
=
float32_ref>,
<tf.Variable
'block1_conv2_1/bias:0'
shape
=
(
64
,) dtype
=
float32_ref>,
<tf.Variable
'block2_conv1_1/kernel:0'
shape
=
(
3
,
3
,
64
,
128
) dtype
=
float32_ref>,
<tf.Variable
'block2_conv1_1/bias:0'
shape
=
(
128
,) dtype
=
float32_ref>,
<tf.Variable
'block2_conv2_1/kernel:0'
shape
=
(
3
,
3
,
128
,
128
) dtype
=
float32_ref>,
<tf.Variable
'block2_conv2_1/bias:0'
shape
=
(
128
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv1_1/kernel:0'
shape
=
(
3
,
3
,
128
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv1_1/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv2_1/kernel:0'
shape
=
(
3
,
3
,
256
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv2_1/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block3_conv3_1/kernel:0'
shape
=
(
3
,
3
,
256
,
256
) dtype
=
float32_ref>,
<tf.Variable
'block3_conv3_1/bias:0'
shape
=
(
256
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv1_1/kernel:0'
shape
=
(
3
,
3
,
256
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv1_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv2_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv2_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block4_conv3_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block4_conv3_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv1_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv1_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv2_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv2_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>,
<tf.Variable
'block5_conv3_1/kernel:0'
shape
=
(
3
,
3
,
512
,
512
) dtype
=
float32_ref>,
<tf.Variable
'block5_conv3_1/bias:0'
shape
=
(
512
,) dtype
=
float32_ref>]
|
解决的办法 。
解决的办法就是在导入模型的时候建立一个variable_scope,将需要训练的变量放在另一个variable_scope,然后通过tf.get_collection获取需要训练的变量,最后通过tf的优化器中var_list指定需要训练的变量 。
1
2
3
4
5
6
7
8
|
from
keras
import
models
with tf.variable_scope(
'base_model'
):
base_model
=
VGG16(include_top
=
False
, input_shape
=
(
224
,
224
,
3
))
with tf.variable_scope(
'xxx'
):
model
=
models.Sequential()
model.add(base_model)
model.add(layers.Flatten())
model.add(layers.Dense(
10
))
|
1
2
3
|
# 获取需要训练的变量
trainable_var
=
tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
'xxx'
)
trainable_var
|
[<tf.Variable 'xxx_2/dense_1/kernel:0' shape=(25088, 10) dtype=float32_ref>, <tf.Variable 'xxx_2/dense_1/bias:0' shape=(10,) dtype=float32_ref>] 。
1
2
3
|
# 定义tf优化器进行训练,这里假设有一个loss
loss
=
model.output
/
2
;
# 随便定义的,方便演示
train_step
=
tf.train.AdamOptimizer().minimize(loss, var_list
=
trainable_var)
|
总结 。
在keras与TensorFlow混编中,keras中设置trainable=False对于TensorFlow而言并不起作用 。
解决的办法就是通过variable_scope对变量进行区分,在通过tf.get_collection来获取需要训练的变量,最后通过tf优化器中var_list指定训练 。
以上这篇解决Keras TensorFlow 混编中 trainable=False设置无效问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我.
原文链接:https://blog.csdn.net/weiwei9363/article/details/79673201 。
最后此篇关于解决Keras TensorFlow 混编中 trainable=False设置无效问题的文章就讲到这里了,如果你想了解更多关于解决Keras TensorFlow 混编中 trainable=False设置无效问题的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!