gpt4 book ai didi

Java 泛型实例详解

转载 作者:qq735679552 更新时间:2022-09-29 22:32:09 26 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章Java 泛型实例详解由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

理解Java泛型最简单的方法是把它看成一种便捷语法,能节省你某些Java类型转换(casting)上的操作:

?
1
2
   List<Apple> box = ...;
Apple apple = box.get( 0 );

上面的代码自身已表达的很清楚:box是一个装有Apple对象的List。get方法返回一个Apple对象实例,这个过程不需要进行类型转换。没有泛型,上面的代码需要写成这样:

?
1
2
   List box = ...;
Apple apple = (Apple) box.get( 0 );

很明显,泛型的主要好处就是让编译器保留参数的类型信息,执行类型检查,执行类型转换操作:编译器保证了这些类型转换的绝对无误。相对于依赖程序员来记住对象类型、执行类型转换——这会导致程序运行时的失败,很难调试和解决,而编译器能够帮助程序员在编译时强制进行大量的类型检查,发现其中的错误.

泛型的构成 。

由泛型的构成引出了一个类型变量的概念。根据Java语言规范,类型变量是一种没有限制的标志符,产生于以下几种情况:

    泛型类声明     泛型接口声明     泛型方法声明     泛型构造器(constructor)声明 。

泛型类和接口 。

如果一个类或接口上有一个或多个类型变量,那它就是泛型。类型变量由尖括号界定,放在类或接口名的后面:

?
1
2
3
public interface List<T> extends Collection<T> {
     ...
     }

简单的说,类型变量扮演的角色就如同一个参数,它提供给编译器用来类型检查的信息.

Java类库里的很多类,例如整个Collection框架都做了泛型化的修改。例如,我们在上面的第一段代码里用到的List接口就是一个泛型类。在那段代码里,box是一个List<Apple>对象,它是一个带有一个Apple类型变量的List接口的类实现的实例。编译器使用这个类型变量参数在get方法被调用、返回一个Apple对象时自动对其进行类型转换.

实际上,这新出现的泛型标记,或者说这个List接口里的get方法是这样的:

T get(int index),

get方法实际返回的是一个类型为T的对象,T是在List<T>声明中的类型变量.

泛型方法和构造器(Constructor) 。

非常的相似,如果方法和构造器上声明了一个或多个类型变量,它们也可以泛型化.

public static <t> T getFirst(List<T> list) 。

这个方法将会接受一个List<T>类型的参数,返回一个T类型的对象。你既可以使用Java类库里提供的泛型类,也可以使用自己的泛型类。类型安全的写入数据…下面的这段代码是个例子,我们创建了一个List<String>实例,然后装入一些数据:

?
1
2
3
List<String> str = new ArrayList<String>();
     str.add( "Hello " );
     str.add( "World." );

如果我们试图在List<String>装入另外一种对象,编译器就会提示错误:

str.add(1),

类型安全的读取数据… 。

当我们在使用List<String>对象时,它总能保证我们得到的是一个String对象:

String myString = str.get(0),

遍历:类库中的很多类,诸如Iterator<T>,功能都有所增强,被泛型化。List<T>接口里的iterator()方法现在返回的是Iterator<T>,由它的T next()方法返回的对象不需要再进行类型转换,你直接得到正确的类型.

?
1
2
3
4
for (Iterator<String> iter = str.iterator(); iter.hasNext();) {
     String s = iter.next();
     System.out.print(s);
     }

使用foreach,“for each”语法同样受益于泛型。前面的代码可以写出这样:

?
1
2
3
for (String s: str) {
     System.out.print(s);
     }

这样既容易阅读也容易维护.

自动封装(Autoboxing)和自动拆封(Autounboxing),在使用Java泛型时,autoboxing/autounboxing这两个特征会被自动的用到,就像下面的这段代码:

?
1
2
3
4
5
6
7
8
List<Integer> ints = new ArrayList<Integer>();
     ints.add( 0 );
     ints.add( 1 );
    
     int sum = 0 ;
     for ( int i : ints) {
     sum += i;
     }

然而,你要明白的一点是,封装和解封会带来性能上的损失,所有,通用要谨慎的使用.

泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数。这种参数类型可以用在类、接口和方法的创建中,分别称为泛型类、泛型接口、泛型方法.

Java语言引入泛型的好处是安全简单.

在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,“任意化”带来的缺点是要做显式的强制类型转换,而这种转换是要求开发者对实际参数类型可以预知的情况下进行的。对于强制类型转换错误的情况,编译器可能不提示错误,在运行的时候才出现异常,这是一个安全隐患.

泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,提高代码的重用率.

泛型在使用中还有一些规则和限制:

1、泛型的类型参数只能是类类型(包括自定义类),不能是简单类型.

2、同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的.

3、泛型的类型参数可以有多个.

4、泛型的参数类型可以使用extends语句,例如。习惯上成为“有界类型”.

5、泛型的参数类型还可以是通配符类型。例如Class classType = Class.forName(java.lang.String),

泛型还有接口、方法等等,内容很多,需要花费一番功夫才能理解掌握并熟练应用。在此给出我曾经了解泛型时候写出的两个例子(根据看的印象写的),实现同样的功能,一个使用了泛型,一个没有使用,通过对比,可以很快学会泛型的应用,学会这个基本上学会了泛型70%的内容.

例子一:使用了泛型 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
public class Gen﹤T﹥ {
  private T ob; //定义泛型成员变量
 
  public Gen(T ob) {
this .ob = ob;
 }
 
  public T getOb() {
return ob;
 }
 
  public void setOb(T ob) {
this .ob = ob;
 }
 
  public void showTyep() {
System.out.println( "T的实际类型是: " + ob.getClass().getName());
 }
}
 
public class GenDemo {
  public static void main(String[] args){
  //定义泛型类Gen的一个Integer版本
 Gen﹤Integer﹥ intOb= new Gen﹤Integer﹥( 88 );
 intOb.showTyep();
  int i= intOb.getOb();
 System.out.println( "value= " + i);
 
 System.out.println( "----------------------------------" );
 
  //定义泛型类Gen的一个String版本
 Gen﹤String﹥ strOb= new Gen﹤String﹥( "Hello Gen!" );
 strOb.showTyep();
 String s=strOb.getOb();
 System.out.println( "value= " + s);
}

例子二:没有使用泛型 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class Gen2 {
  private Object ob; //定义一个通用类型成员
 
  public Gen2(Object ob) {
this .ob = ob;
 }
 
  public Object getOb() {
return ob;
 }
 
  public void setOb(Object ob) {
this .ob = ob;
 }
 
  public void showTyep() {
System.out.println( "T的实际类型是: " + ob.getClass().getName());
 }
}
 
public class GenDemo2 {
  public static void main(String[] args) {
//定义类Gen2的一个Integer版本
Gen2 intOb = new Gen2( new Integer( 88 ));
intOb.showTyep();
int i = (Integer) intOb.getOb();
System.out.println( "value= " + i);
 
System.out.println( "----------------------------------" );
 
//定义类Gen2的一个String版本
Gen2 strOb = new Gen2( "Hello Gen!" );
strOb.showTyep();
String s = (String) strOb.getOb();
System.out.println( "value= " + s);
 }
}

运行结果:

两个例子运行Demo结果是相同的,控制台输出结果如下:

T的实际类型是

java.lang.Integer 。

value= 88 。

---------------------------------- 。

T的实际类型是: java.lang.String 。

value= Hello Gen.

Process finished with exit code 0 。

看明白这个,以后基本的泛型应用和代码阅读就不成问题了.

以上就是对java泛型的实例分析,学习Java泛型的朋友可以参考下.

最后此篇关于Java 泛型实例详解的文章就讲到这里了,如果你想了解更多关于Java 泛型实例详解的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com