- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章求斐波那契(Fibonacci)数列通项的七种实现方法由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
一:递归实现 使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1。 二:数组实现 空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快。 三:vector<int>实现 时间复杂度是0(n),时间复杂度是0(1),就是不知道vector的效率高不高,当然vector有自己的属性会占用资源。 四:queue<int>实现 当然队列比数组更适合实现斐波那契数列,时间复杂度和空间复杂度和vector<int>一样,但队列太适合这里了, f(n)=f(n-1)+f(n-2),f(n)只和f(n-1)和f(n-2)有关,f(n)入队列后,f(n-2)就可以出队列了。 五:迭代实现 迭代实现是最高效的,时间复杂度是0(n),空间复杂度是0(1)。 六:公式实现 百度的时候,发现原来斐波那契数列有公式的,所以可以使用公式来计算的。 由于double类型的精度还不够,所以程序算出来的结果会有误差,如果把公式展开计算,得出的结果就是正确的。 完整的实现代码如下:
复制代码 代码如下
#include "iostream" #include "queue" #include "cmath" using namespace std; int fib1(int index) //递归实现 { if(index<1) { return -1; } if(index==1 || index==2) return 1; return fib1(index-1)+fib1(index-2); } int fib2(int index) //数组实现 { if(index<1) { return -1; } if(index<3) { return 1; } int *a=new int[index]; a[0]=a[1]=1; for(int i=2;i<index;i++) a[i]=a[i-1]+a[i-2]; int m=a[index-1]; delete a; //释放内存空间 return m; } int fib3(int index) //借用vector<int>实现 { if(index<1) { return -1; } vector<int> a(2,1); //创建一个含有2个元素都为1的向量 a.reserve(3); for(int i=2;i<index;i++) { a.insert(a.begin(),a.at(0)+a.at(1)); a.pop_back(); } return a.at(0); } int fib4(int index) //队列实现 { if(index<1) { return -1; } queue<int>q; q.push(1); q.push(1); for(int i=2;i<index;i++) { q.push(q.front()+q.back()); q.pop(); } return q.back(); } int fib5(int n) //迭代实现 { int i,a=1,b=1,c=1; if(n<1) { return -1; } for(i=2;i<n;i++) { c=a+b; //辗转相加法(类似于求最大公约数的辗转相除法) a=b; b=c; } return c; } int fib6(int n) { double gh5=sqrt((double)5); return (pow((1+gh5),n)-pow((1-gh5),n))/(pow((double)2,n)*gh5); } int main(void) { printf("%d\n",fib3(6)); system("pause"); return 0; } 。
。
七:二分矩阵方法 。
如上图,Fibonacci 数列中任何一项可以用矩阵幂算出,而n次幂是可以在logn的时间内算出的。 下面贴出代码:
复制代码 代码如下
void multiply(int c[2][2],int a[2][2],int b[2][2],int mod) { int tmp[4]; tmp[0]=a[0][0]*b[0][0]+a[0][1]*b[1][0]; tmp[1]=a[0][0]*b[0][1]+a[0][1]*b[1][1]; tmp[2]=a[1][0]*b[0][0]+a[1][1]*b[1][0]; tmp[3]=a[1][0]*b[0][1]+a[1][1]*b[1][1]; c[0][0]=tmp[0]%mod; c[0][1]=tmp[1]%mod; c[1][0]=tmp[2]%mod; c[1][1]=tmp[3]%mod; }//计算矩阵乘法,c=a*b int fibonacci(int n,int mod)//mod表示数字太大时需要模的数 { if(n==0)return 0; else if(n<=2)return 1;//这里表示第0项为0,第1,2项为1 int a[2][2]={{1,1},{1,0}}; int result[2][2]={{1,0},{0,1}};//初始化为单位矩阵 int s; n-=2; while(n>0) { if(n%2 == 1) multiply(result,result,a,mod); multiply(a,a,a,mod); n /= 2; }//二分法求矩阵幂 s=(result[0][0]+result[0][1])%mod;//结果 return s; } 。
附带的再贴上二分法计算a的n次方函数.
复制代码 代码如下
int pow(int a,int n) { int ans=1; while(n) { if(n&1) ans*=a; a*=a; n>>=1; } return ans; } 。
最后此篇关于求斐波那契(Fibonacci)数列通项的七种实现方法的文章就讲到这里了,如果你想了解更多关于求斐波那契(Fibonacci)数列通项的七种实现方法的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我是一名优秀的程序员,十分优秀!