gpt4 book ai didi

pytorch:实现简单的GAN示例(MNIST数据集)

转载 作者:qq735679552 更新时间:2022-09-29 22:32:09 27 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章pytorch:实现简单的GAN示例(MNIST数据集)由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

我就废话不多说了,直接上代码吧! 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 13 10:22:45 2018
@author: www
"""
 
import torch
from torch import nn
from torch.autograd import Variable
 
import torchvision.transforms as tfs
from torch.utils.data import DataLoader, sampler
from torchvision.datasets import MNIST
 
import numpy as np
 
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
 
plt.rcParams[ 'figure.figsize' ] = ( 10.0 , 8.0 ) # 设置画图的尺寸
plt.rcParams[ 'image.interpolation' ] = 'nearest'
plt.rcParams[ 'image.cmap' ] = 'gray'
 
def show_images(images): # 定义画图工具
   images = np.reshape(images, [images.shape[ 0 ], - 1 ])
   sqrtn = int (np.ceil(np.sqrt(images.shape[ 0 ])))
   sqrtimg = int (np.ceil(np.sqrt(images.shape[ 1 ])))
 
   fig = plt.figure(figsize = (sqrtn, sqrtn))
   gs = gridspec.GridSpec(sqrtn, sqrtn)
   gs.update(wspace = 0.05 , hspace = 0.05 )
 
   for i, img in enumerate (images):
     ax = plt.subplot(gs[i])
     plt.axis( 'off' )
     ax.set_xticklabels([])
     ax.set_yticklabels([])
     ax.set_aspect( 'equal' )
     plt.imshow(img.reshape([sqrtimg,sqrtimg]))
   return
  
def preprocess_img(x):
   x = tfs.ToTensor()(x)
   return (x - 0.5 ) / 0.5
 
def deprocess_img(x):
   return (x + 1.0 ) / 2.0
 
class ChunkSampler(sampler.Sampler): # 定义一个取样的函数
   """Samples elements sequentially from some offset.
   Arguments:
     num_samples: # of desired datapoints
     start: offset where we should start selecting from
   """
   def __init__( self , num_samples, start = 0 ):
     self .num_samples = num_samples
     self .start = start
 
   def __iter__( self ):
     return iter ( range ( self .start, self .start + self .num_samples))
 
   def __len__( self ):
     return self .num_samples
    
NUM_TRAIN = 50000
NUM_VAL = 5000
 
NOISE_DIM = 96
batch_size = 128
 
train_set = MNIST( 'E:/data' , train = True , transform = preprocess_img)
 
train_data = DataLoader(train_set, batch_size = batch_size, sampler = ChunkSampler(NUM_TRAIN, 0 ))
 
val_set = MNIST( 'E:/data' , train = True , transform = preprocess_img)
 
val_data = DataLoader(val_set, batch_size = batch_size, sampler = ChunkSampler(NUM_VAL, NUM_TRAIN))
 
imgs = deprocess_img(train_data.__iter__(). next ()[ 0 ].view(batch_size, 784 )).numpy().squeeze() # 可视化图片效果
show_images(imgs)
 
#判别网络
def discriminator():
   net = nn.Sequential(   
       nn.Linear( 784 , 256 ),
       nn.LeakyReLU( 0.2 ),
       nn.Linear( 256 , 256 ),
       nn.LeakyReLU( 0.2 ),
       nn.Linear( 256 , 1 )
     )
   return net
  
#生成网络
def generator(noise_dim = NOISE_DIM): 
   net = nn.Sequential(
     nn.Linear(noise_dim, 1024 ),
     nn.ReLU( True ),
     nn.Linear( 1024 , 1024 ),
     nn.ReLU( True ),
     nn.Linear( 1024 , 784 ),
     nn.Tanh()
   )
   return net
  
#判别器的 loss 就是将真实数据的得分判断为 1,假的数据的得分判断为 0,而生成器的 loss 就是将假的数据判断为 1
 
bce_loss = nn.BCEWithLogitsLoss() #交叉熵损失函数
 
def discriminator_loss(logits_real, logits_fake): # 判别器的 loss
   size = logits_real.shape[ 0 ]
   true_labels = Variable(torch.ones(size, 1 )). float ()
   false_labels = Variable(torch.zeros(size, 1 )). float ()
   loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels)
   return loss
  
def generator_loss(logits_fake): # 生成器的 loss
   size = logits_fake.shape[ 0 ]
   true_labels = Variable(torch.ones(size, 1 )). float ()
   loss = bce_loss(logits_fake, true_labels)
   return loss
  
# 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999
def get_optimizer(net):
   optimizer = torch.optim.Adam(net.parameters(), lr = 3e - 4 , betas = ( 0.5 , 0.999 ))
   return optimizer
  
def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every = 250 ,
         noise_size = 96 , num_epochs = 10 ):
   iter_count = 0
   for epoch in range (num_epochs):
     for x, _ in train_data:
       bs = x.shape[ 0 ]
       # 判别网络
       real_data = Variable(x).view(bs, - 1 ) # 真实数据
       logits_real = D_net(real_data) # 判别网络得分
      
       sample_noise = (torch.rand(bs, noise_size) - 0.5 ) / 0.5 # -1 ~ 1 的均匀分布
       g_fake_seed = Variable(sample_noise)
       fake_images = G_net(g_fake_seed) # 生成的假的数据
       logits_fake = D_net(fake_images) # 判别网络得分
 
       d_total_error = discriminator_loss(logits_real, logits_fake) # 判别器的 loss
       D_optimizer.zero_grad()
       d_total_error.backward()
       D_optimizer.step() # 优化判别网络
      
       # 生成网络
       g_fake_seed = Variable(sample_noise)
       fake_images = G_net(g_fake_seed) # 生成的假的数据
 
       gen_logits_fake = D_net(fake_images)
       g_error = generator_loss(gen_logits_fake) # 生成网络的 loss
       G_optimizer.zero_grad()
       g_error.backward()
       G_optimizer.step() # 优化生成网络
 
       if (iter_count % show_every = = 0 ):
         print ( 'Iter: {}, D: {:.4}, G:{:.4}' . format (iter_count, d_total_error.item(), g_error.item()))
         imgs_numpy = deprocess_img(fake_images.data.cpu().numpy())
         show_images(imgs_numpy[ 0 : 16 ])
         plt.show()
         print ()
       iter_count + = 1
 
D = discriminator()
G = generator()
 
D_optim = get_optimizer(D)
G_optim = get_optimizer(G)
 
train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)     

以上这篇pytorch:实现简单的GAN示例(MNIST数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我.

原文链接:https://blog.csdn.net/xckkcxxck/article/details/83037025 。

最后此篇关于pytorch:实现简单的GAN示例(MNIST数据集)的文章就讲到这里了,如果你想了解更多关于pytorch:实现简单的GAN示例(MNIST数据集)的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com