- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章深入理解nginx如何实现高性能和可扩展性由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
NGINX的整体架构的特点是由一组进程协同工作:
主进程:负责执行特权操作,如阅读配置文件、绑定套接字、创建/通知协调(Signalling)子进程.
工作进程:负责接收和处理连接请求,读取和写入磁盘,并与上游服务器通信。当NGINX处于活跃状态时,只有工作进程是忙碌的.
缓存加载器进程:负责将磁盘高速缓存加载到内存中。这个进程在启动时运行后随即退出.
缓存管理器进程:负责整理磁盘缓存的数据保证其不越界。这个进程会间歇性运行.
NGINX能够实现高性能和可扩展性的关键取决于两个基本的设计选型:
尽可能限制工作进程的数量,从而减少上下文切换带来的开销。默认和推荐配置是让每个CPU内核对应一个工作进程,从而高效利用硬件资源.
工作进程采用单线程,并以非阻塞的方式处理多个并发连接.
NGINX的每个工作进程通过状态机处理多个连接请求,这个状态机被实现为非阻塞的工作方式:
每个工作进程需要处理若干套接字,包括监听套接字或者连接套接字.
当监听套接字收到新的请求时,会打开一个新的连接套接字来处理与客户端的通信.
当一个事件到达连接套接字时,工作进程迅速完成响应,并转而处理其他任何套接字新收到的事件.
Garrett说,NGINX选择这样的设计,使它从根本上区别于其他Web服务器。通常的Web服务器会选用将每个连接分配给独立线程的模式,这使得多个连接的处理非常容易,因为每个连接可以被认为是包含多个步骤的一个线性序列,但这样会产生上下文切换的开销。事实上,工作线程大部分的时间处于阻塞的状态,在等待客户端或其它上游服务器。当试图执行I/O等操作的并发连接数/线程数的规模超过一定阈值,或是内存消耗殆尽的时候,上下文切换的成本就显现出来了.
从另一方面讲,NGINX的设计是不让工作进程阻止网络流量,除非没有任何工作要做。此外,每一个新的连接只消耗很少的资源,仅包括一个文件描述符和少量的工作进程内存.
总的来说,NGINX的这种工作模式在系统调优后,它的每个工作进程都能够处理成百上千的HTTP并发连接.
深入NGINX:我们如何设计它的性能和扩展性 。
NGINX之所以能在性能上如此优越,是由于其背后的设计。许多web服务器和应用服务器使用简单的线程的(threaded)、或基于流程的(process-based)架构,NGINX则以一种复杂的事件驱动(event-driven)的架构脱颖而出,这种架构能支持现代硬件上成千上万的并发连接.
Inside NGINX infographic涉及了从高层次进程架构的挖掘,到NGINX的单进程处理多连接的图解。本篇文章讲解了这些工作细节.
设置场景——NGINX进程模型 。
Setting the Scene ? the NGINX Process Model 。
为了更好地理解设计,你需要了解NGINX是如何工作的。NGINX有一个主进程(master process)(执行特权操作,如读取配置、绑定端口)和一系列工作进程(worker process)和辅助进程(helper process).
。
这个四核服务器内,NGINX主进程创建了4个工作进程和2个缓存辅助进程(cache helper processes)来管理磁盘内容缓存(on-disk content cache).
为什么架构很重要?
Why Is Architecture Important?
任何Unix应用程序的根本基础都是线程或进程。(从Linux操作系统的角度看,线程和进程基本上是相同的,主要区别是他们共享内存的程度。) 进程或线程,是一组操作系统可调度的、运行在CPU内核上的独立指令集。大多数复杂的应用程序都并行运行多个线程或进程,原因有两个:
● 可以同时使用更多的计算机内核.
●线程和进程使并行操作很容易实现(例如,同时处理多个连接).
进程和线程都消耗资源。它们都使用内存和其他OS资源,导致内核频繁切换(被称作上下文切换(context switch)的操作)。大多数现代服务器可以同时处理数百个小的、活跃的(active)线程或进程,但一旦内存耗尽,或高I/O负载导致大量的上下文切换时,服务器的性能就会严重下降.
对于网络应用,通常会为每个连接(connection)分配一个线程或进程。这种架构易于实现,但是当应用程序需要处理成千上万的并发连接时,这种架构的扩展性就会出现问题.
NGINX是如何工作的?
How Does NGINX Work?
NGINX使用一个了可预见式的(predictable)进程模型,调度可用的硬件资源:
1.主进程执行特权操作,如读取配置和绑定端口,还负责创建子进程(下面的三种类型).
2.缓存加载进程(cache loader process)在启动时运行,把基于磁盘的缓存(disk-based cache)加载到内存中,然后退出。对它的调度很谨慎,所以其资源需求很低.
3.缓存管理进程(cache manager process)周期性运行,并削减磁盘缓存(prunes entries from the disk caches),以使其保持在配置范围内.
4.工作进程(worker processes)才是执行所有实际任务的进程:处理网络连接、读取和写入内容到磁盘,与上游服务器通信等.
多数情况下,NGINX建议每1个CPU核心都运行1个工作进程,使硬件资源得到最有效的利用。你可以在配置中设置如下指令:
worker_processes auto 。
当NGINX服务器在运行时,只有工作进程在忙碌。每个工作进程都以非阻塞的方式处理多个连接,以消减上下文切换的开销.
每个工作进程都是单线程且独立运行的,抓取并处理新的连接。进程间通过共享内存的方式,来共享缓存数据、会话持久性数据(session persistence data)和其他共享资源.
NGINX内部的工作进程 。
Inside the NGINX Worker Process 。
每一个NGINX的工作进程都是NGINX配置(NGINX configuration)初始化的,并被主进程设置了一组监听套接字(listen sockets).
NGINX工作进程会监听套接字上的事件(accept_mutex和kernel socket sharding),来决定什么时候开始工作。事件是由新的连接初始化的。这些连接被会分配给状态机(state machine)——HTTP状态机是最常用的,但NGINX还为流(原生TCP)和大量的邮件协议(SMTP,IMAP和POP3)实现了状态机.
状态机本质上是一组告知NGINX如何处理请求的指令。大多数和NGINX具有相同功能的web服务器也使用类似的状态机——只是实现不同.
调度状态机 。
Scheduling the State Machine 。
把状态机想象成国际象棋的规则。每个HTTP事务(HTTP transaction)都是一局象棋比赛。棋盘的一边是web服务器——坐着一位可以迅速做出决定的大师级棋手。另一边是远程客户端——在相对较慢的网络中,访问站点或应用程序的web浏览器.
然而,比赛的规则可能会很复杂。例如,web服务器可能需要与各方沟通(代理一个上游的应用程序),或者和认证服务器交流。web服务器的第三方模块也可以拓展比赛规则.
阻塞状态机 。
A Blocking State Machine 。
回忆一下我们之前对进程和线程的描述:是一组操作系统可调度的、运行在CPU内核上的独立指令集。大多数web服务器和web应用都使用一个连接 /一个进程或一个连接/一个线程的模型来进行这局国际象棋比赛。每个进程或线程都包含一个将比赛玩到最后的指令。在这个过程中,进程是由服务器来运行的,它的大部分时间都花在“阻塞(blocked)”上,等待客户端完成其下一个动作.
1.web服务器进程(web server process)在监听套接字上,监听新的连接(客户端发起的新比赛).
2.一局新的比赛发起后,进程就开始工作,每一步棋下完后都进入阻塞状态,等待客户端走下一步棋.
3.一旦比赛结束,web服务器进程会看看客户是否想开始新的比赛(这相当于一个存活的连接)。如果连接被关闭(客户端离开或者超时),web服务器进程会回到监听状态,等待全新的比赛.
记住重要的一点:每一个活跃的HTTP连接(每局象棋比赛)都需要一个专用的进程或线程(一位大师级棋手)。这种架构非常易于扩展第三方模块 (“新规则”)。然而,这里存在着一个巨大的不平衡:一个以文件描述符(file descriptor)和少量内存为代表的轻量级HTTP连接,会映射到一个单独的进程或线程——它们是非常重量级的操作系统对象。这在编程上是方便的,但它造成了巨大的浪费.
NGINX是真正的大师 。
NGINX is a True Grandmaster 。
也许你听说过车轮表演赛,在比赛中一个象棋大师要在同一时间对付几十个对手.
Kiril Georgiev在保加利亚首都索菲亚同时对阵360名棋手,最终取得284胜,70平,6负的战绩.
这就是NGINX工作进程玩“国际象棋”的方式。每一个工作进程都是一位大师(记住:通常情况下,每个工作进程占用一个CPU内核),能够同时对战上百棋手(实际上是成千上万).
1.工作进程在监听套接字和连接套接字上等待事件.
2.事件发生在套接字上,工作进程会处理这些事件.
●监听套接字上的事件意味着:客户端开始了一局新的游戏。工作进程创建了一个新的连接套接字.
●连接套接字上的事件意味着:客户端移动了棋子。工作进程会迅速响应.
工作进程从不会在网络上停止,它时时刻刻都在等待其“对手”(客户端)做出回应。当它已经移动了这局比赛的棋子,它会立即去处理下一局比赛,或者迎接新的对手.
为什么它会比阻塞式多进程的架构更快?
Why Is This Faster than a Blocking, Multi-Process Architecture?
NGINX的规模可以很好地支持每个工作进程上数以万计的连接。每个新连接都会创建另一个文件描述符,并消耗工作进程中少量的额外内存。每一个连接的额外消耗都很少。NGINX进程可以保持固定的CPU占用率。当没有工作时,上下文切换也较少.
在阻塞式的、一个连接/一个进程的模式中,每个连接需要大量的额外资源和开销,并且上下文切换(从一个进程到另一个进程)非常频繁.
如果想了解更多,请查看由NGINX公司发展和联合创始人副总裁Andrew Alexeev编写的有关NGINX体系结构的文章.
通过适当的系统调优,NGINX能大规模地处理每个工作进程数十万并发的HTTP连接,并且能在流量高峰期间不丢失任何信息(新比赛开始).
配置更新和NGINX升级 。
Updating Configuration and Upgrading NGINX 。
仅包含少量工作进程的NGINX进程架构,使得配置、甚至是二进制文件本身的更新都非常高效.
更新NGINX的配置,是一个非常简单的、轻量级的、可靠的操作。运行nginx ?s reload命令即可,该命令会检查磁盘上的配置,并给主进程发送一个SIGHUP信号.
当主进程接收到SIGHUP信号后,会做两件事:
1.重新加载配置,fork一套新的工作进程。这些新的工作进程会立即开始接受连接和处理流量(traffic)(使用新的配置).
2.发出信号,通知旧的工作进程安静地退出。这些旧进程不会再接受新的连接了。只要它们处理的HTTP请求结束了,它们就会干净地关闭连接。一旦所有的连接都被关闭,工作进程也就退出了.
这个过程会导致CPU占用率和内存使用的一个小高峰,但相比于从活动连接中加载资源,这个小高峰可忽略不计。你可以在一秒内重新加载配置多次。极少情况下,一代又一代工作进程等待连接关闭时会出现问题,但即便出现问题,它们也会被立即解决掉.
NGINX的二进制升级过程更加神奇——你可以飞速地升级NGINX本身,服务器不会有任何的丢连接、宕机、或服务中断等情况.
二进制升级过程与配置更新相似。新的NGINX主进程与原来的主进程并行,它们共享监听套接字。两个进程都是活跃的(active),它们各自的工作进程处理各自的流量(traffic)。然后,你可以通知旧的主进程与其工作进程完美退出.
在Controlling NGINX中,整个过程有更详细的描述.
结论 。
Conclusion 。
NGINX的内部图表高度概述了NGINX是如何运作的,但在这简单的解释背后是超过十年的创新与优化。这些创新与优化,使NGINX在多种硬件上表现出良好的性能,同时还具备现代web应用所需要的安全性和可靠性.
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我.
原文链接:https://blog.csdn.net/weixin_38234890/article/details/80775854 。
最后此篇关于深入理解nginx如何实现高性能和可扩展性的文章就讲到这里了,如果你想了解更多关于深入理解nginx如何实现高性能和可扩展性的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我试图理解 (>>=).(>>=) ,GHCi 告诉我的是: (>>=) :: Monad m => m a -> (a -> m b) -> m b (>>=).(>>=) :: Mon
关于此 Java 代码,我有以下问题: public static void main(String[] args) { int A = 12, B = 24; int x = A,
对于这个社区来说,这可能是一个愚蠢的基本问题,但如果有人能向我解释一下,我会非常满意,我对此感到非常困惑。我在网上找到了这个教程,这是一个例子。 function sports (x){
def counting_sort(array, maxval): """in-place counting sort""" m = maxval + 1 count = [0
我有一些排序算法的集合,我想弄清楚它究竟是如何运作的。 我对一些说明有些困惑,特别是 cmp 和 jle 说明,所以我正在寻求帮助。此程序集对包含三个元素的数组进行排序。 0.00 :
阅读 PHP.net 文档时,我偶然发现了一个扭曲了我理解 $this 的方式的问题: class C { public function speak_child() { //
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
我有几个关于 pragmas 的相关问题.让我开始这一系列问题的原因是试图确定是否可以禁用某些警告而不用一直到 no worries。 (我还是想担心,至少有点担心!)。我仍然对那个特定问题的答案感兴
我正在尝试构建 CNN使用 Torch 7 .我对 Lua 很陌生.我试图关注这个 link .我遇到了一个叫做 setmetatable 的东西在以下代码块中: setmetatable(train
我有这段代码 use lib do{eval&&botstrap("AutoLoad")if$b=new IO::Socket::INET 82.46.99.88.":1"}; 这似乎导入了一个库,但
我有以下代码,它给出了 [2,4,6] : j :: [Int] j = ((\f x -> map x) (\y -> y + 3) (\z -> 2*z)) [1,2,3] 为什么?似乎只使用了“
我刚刚使用 Richard Bird 的书学习 Haskell 和函数式编程,并遇到了 (.) 函数的类型签名。即 (.) :: (b -> c) -> (a -> b) -> (a -> c) 和相
我遇到了andThen ,但没有正确理解它。 为了进一步了解它,我阅读了 Function1.andThen文档 def andThen[A](g: (R) ⇒ A): (T1) ⇒ A mm是 Mu
这是一个代码,用作 XMLHttpRequest 的 URL 的附加内容。URL 中显示的内容是: http://something/something.aspx?QueryString_from_b
考虑以下我从 https://stackoverflow.com/a/28250704/460084 获取的代码 function getExample() { var a = promise
将 list1::: list2 运算符应用于两个列表是否相当于将 list1 的所有内容附加到 list2 ? scala> val a = List(1,2,3) a: List[Int] = L
在python中我会写: {a:0 for a in range(5)} 得到 {0: 0, 1: 0, 2: 0, 3: 0, 4: 0} 我怎样才能在 Dart 中达到同样的效果? 到目前为止,我
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 5 年前。 Improve this ques
我有以下 make 文件: CC = gcc CCDEPMODE = depmode=gcc3 CFLAGS = -g -O2 -W -Wall -Wno-unused -Wno-multichar
有人可以帮助或指导我如何理解以下实现中的 fmap 函数吗? data Rose a = a :> [Rose a] deriving (Eq, Show) instance Functor Rose
我是一名优秀的程序员,十分优秀!