gpt4 book ai didi

Python人工智能深度学习CNN

转载 作者:qq735679552 更新时间:2022-09-28 22:32:09 34 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章Python人工智能深度学习CNN由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

1.CNN概述

CNN的整体思想,就是对图片进行下采样,让一个函数只学一个图的一部分,这样便得到少但是更有效的特征,最后通过全连接神经网络对结果进行输出.

整体架构如下:

输入图片 。

→卷积:得到特征图(激活图) 。

→ReLU:去除负值 。

→池化:缩小数据量同时保留最有效特征 。

(以上步骤可多次进行) 。

→输入全连接神经网络 。

Python人工智能深度学习CNN

  。

2.卷积层

CNN-Convolution 。

卷积核(或者被称为kernel, filter, neuron)是要被学出来的,卷积核中的数就是权重(参数) 。

Python人工智能深度学习CNN

做内积,把卷积核的每一个参数和图像中对应位置的数字相乘(对应位置的元素相乘,不同于矩阵乘法),再求和。相当于一个神经元,对输入的数据,进行权重的分配,而权重就是卷积核的数据。再求和,就是第一个神经元所得到的结果。把这个权重对图片所有数据进行处理,就得到第一个激活图或特征图(feature map)。我们可以增加卷积核的数量,就会得到多层激活图,可以更好的保留数据的空间尺寸.

Python人工智能深度学习CNN

当卷积核与图片进行相乘相加的时候,如果卷积核此时正在计算的区域数字分布与卷积核类似,所得的求和结果会很大(称为卷积核被激活了),而其他地方会很小,说明图像在这个区域,有和卷积核类似的图案.

Python人工智能深度学习CNN

一个卷积核只能识别一个特征。因此我们需要添加多个卷积核,卷积核越多,得到的激活图就越深,输入图像的信息就越多.

Python人工智能深度学习CNN

对于彩色的图来说,不需要把颜色分开,卷积核的深度和图像深度是一样的,比如彩色是红绿蓝三层,那么卷积核也是三层.

卷积层相当于降采样的神经网络,如下图,本来应该连接36个神经元,但实际连接了9个.

Python人工智能深度学习CNN

  。

3.池化层

CNN-MaxPooling 。

在Max Pooling,也就是池化层之前,会需要进行一个ReLU函数转化,即把小于0的值全转为0,其他的不变.

池化层主要就是为了减少数据量,选一个尺寸之后,直接用尺寸中的最大值代替那个尺寸。这样可以减少数据从而减少运算量.

Python人工智能深度学习CNN

如下图所示,输入数据原本是6*6,通过卷积层之后变成4*4,通过池化层之后变成2*2。对于实际的图片来说,维度可能很高,因此卷积层,池化层可以多次进行.

Python人工智能深度学习CNN

  。

4.全连层

将最后得到的高层次特征输入全连接的神经网络,即全连层。全连层就是一个全连接的神经网络,它的参数数量就是最后的池化层输出的数据数量.

同样的,前向传播后,计算损失函数后进行后向传播,得到各参数的梯度,对各参数进行更新,直到找到最佳参数.

因此,在全连接之前的所有层,不管多少层的卷积、池化,都是为了得到更好的特征的同时降低数据量。使得模型可以更好地训练.

以上就是Python人工智能深度学习CNN的详细内容,更多关于人工智能CNN深度学习的资料请关注我其它相关文章! 。

原文链接:https://blog.csdn.net/Swayzzu/article/details/121043334 。

最后此篇关于Python人工智能深度学习CNN的文章就讲到这里了,如果你想了解更多关于Python人工智能深度学习CNN的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com