gpt4 book ai didi

一小时学会TensorFlow2之Fashion Mnist

转载 作者:qq735679552 更新时间:2022-09-27 22:32:09 34 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章一小时学会TensorFlow2之Fashion Mnist由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

描述

Fashion Mnist 是一个类似于 Mnist 的图像数据集. 涵盖 10 种类别的 7 万 (6 万训练集 + 1 万测试集) 个不同商品的图片. 。

一小时学会TensorFlow2之Fashion Mnist

  。

Tensorboard

Tensorboard 是 tensorflow 的一个可视化工具. 。

一小时学会TensorFlow2之Fashion Mnist

创建 summary

我们可以通过tf.summary.create_file_writer(file_path)来创建一个新的 summary 实例. 。

例子

# 将当前时间作为子文件名current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")# 监听的文件的路径log_dir = 'logs/' + current_time# 创建writersummary_writer = tf.summary.create_file_writer(log_dir)

存入数据

通过tf.summary.scalar我们可以向 summary 对象存入数据. 。

格式

tf.summary.scalar(  name, data, step=None, description=None)

例子

with summary_writer.as_default():  tf.summary.scalar("train-loss", float(Cross_Entropy), step=step)

  。

metrics

一小时学会TensorFlow2之Fashion Mnist

metrics.Mean()

metrics.Mean()可以帮助我们计算平均数. 。

格式

tf.keras.metrics.Mean(  name='mean', dtype=None)

例子

# 准确率表loss_meter = tf.keras.metrics.Mean()

metrics.Accuracy()

格式

tf.keras.metrics.Accuracy(  name='accuracy', dtype=None)

例子

# 损失表acc_meter = tf.keras.metrics.Accuracy()

变量更新 &重置

我们可以通过update_state来实现变量更新, 通过rest_state来实现变量重置. 。

例如

# 跟新损失loss_meter.update_state(Cross_Entropy)# 重置loss_meter.reset_state()

  。

案例

pre_process 函数

def pre_process(x, y):  """  数据预处理  :param x: 特征值  :param y: 目标值  :return: 返回处理好的x, y  """  # 转换x  x = tf.cast(x, tf.float32) / 255  x = tf.reshape(x, [-1, 784])  # 转换y  y = tf.cast(y, dtype=tf.int32)  y = tf.one_hot(y, depth=10)  return x, y

get_data 函数

def get_data():  """  获取数据  :return: 返回分批完的训练集和测试集  """  # 获取数据  (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()  # 分割训练集  train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)  train_db = train_db.batch(batch_size).map(pre_process)  # 分割测试集  test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)  test_db = test_db.batch(batch_size).map(pre_process)  # 返回  return train_db, test_db

train 函数

def train(epoch, train_db):  """  训练数据  :param train_db: 分批的数据集  :return: 无返回值  """  for step, (x, y) in enumerate(train_db):      with tf.GradientTape() as tape:          # 获取模型输出结果          logits = model(x)          # 计算交叉熵          Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True)          Cross_Entropy = tf.reduce_sum(Cross_Entropy)          # 跟新损失          loss_meter.update_state(Cross_Entropy)      # 计算梯度      grads = tape.gradient(Cross_Entropy, model.trainable_variables)      # 跟新参数      optimizer.apply_gradients(zip(grads, model.trainable_variables))      # 每100批调试输出一下误差      if step % 100 == 0:          print("step:", step, "Cross_Entropy:", loss_meter.result().numpy())          # 重置          loss_meter.reset_state()          # 可视化          with summary_writer.as_default():              tf.summary.scalar("train-loss", float(Cross_Entropy), step= epoch * 235 + step)

test 函数

def test(epoch, test_db):  """  测试模型  :param epoch: 轮数  :param test_db: 分批的测试集  :return: 无返回值  """  # 重置  acc_meter.reset_state()  for x, y in test_db:      # 获取模型输出结果      logits = model(x)      # 预测结果      pred = tf.argmax(logits, axis=1)      # 从one_hot编码变回来      y = tf.argmax(y, axis=1)      # 计算准确率      acc_meter.update_state(y, pred)  # 调试输出  print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", )  # 可视化  with summary_writer.as_default():      tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235)

main 函数

def main():  """  主函数  :return: 无返回值  """  # 获取数据  train_db, test_db = get_data()  # 轮期  for epoch in range(iteration_num):      train(epoch, train_db)      test(epoch, test_db)

完整代码

import datetimeimport tensorflow as tf# 定义超参数batch_size = 256  # 一次训练的样本数目learning_rate = 0.001  # 学习率iteration_num = 20  # 迭代次数# 优化器optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)# 准确率表loss_meter = tf.keras.metrics.Mean()# 损失表acc_meter = tf.keras.metrics.Accuracy()# 可视化current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")log_dir = 'logs/' + current_timesummary_writer = tf.summary.create_file_writer(log_dir)  # 创建writer# 模型model = tf.keras.Sequential([  tf.keras.layers.Dense(256, activation=tf.nn.relu),  tf.keras.layers.Dense(128, activation=tf.nn.relu),  tf.keras.layers.Dense(64, activation=tf.nn.relu),  tf.keras.layers.Dense(32, activation=tf.nn.relu),  tf.keras.layers.Dense(10)])# 调试输出summarymodel.build(input_shape=[None, 28 * 28])print(model.summary())def pre_process(x, y):  """  数据预处理  :param x: 特征值  :param y: 目标值  :return: 返回处理好的x, y  """  # 转换x  x = tf.cast(x, tf.float32) / 255  x = tf.reshape(x, [-1, 784])  # 转换y  y = tf.cast(y, dtype=tf.int32)  y = tf.one_hot(y, depth=10)  return x, ydef get_data():  """  获取数据  :return: 返回分批完的训练集和测试集  """  # 获取数据  (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()  # 分割训练集  train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)  train_db = train_db.batch(batch_size).map(pre_process)  # 分割测试集  test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)  test_db = test_db.batch(batch_size).map(pre_process)  # 返回  return train_db, test_dbdef train(epoch, train_db):  """  训练数据  :param train_db: 分批的数据集  :return: 无返回值  """  for step, (x, y) in enumerate(train_db):      with tf.GradientTape() as tape:          # 获取模型输出结果          logits = model(x)          # 计算交叉熵          Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True)          Cross_Entropy = tf.reduce_sum(Cross_Entropy)          # 跟新损失          loss_meter.update_state(Cross_Entropy)      # 计算梯度      grads = tape.gradient(Cross_Entropy, model.trainable_variables)      # 跟新参数      optimizer.apply_gradients(zip(grads, model.trainable_variables))      # 每100批调试输出一下误差      if step % 100 == 0:          print("step:", step, "Cross_Entropy:", loss_meter.result().numpy())          # 重置          loss_meter.reset_state()          # 可视化          with summary_writer.as_default():              tf.summary.scalar("train-loss", float(Cross_Entropy), step=epoch * 235 + step)def test(epoch, test_db):  """  测试模型  :param epoch: 轮数  :param test_db: 分批的测试集  :return: 无返回值  """  # 重置  acc_meter.reset_state()  for x, y in test_db:      # 获取模型输出结果      logits = model(x)      # 预测结果      pred = tf.argmax(logits, axis=1)      # 从one_hot编码变回来      y = tf.argmax(y, axis=1)      # 计算准确率      acc_meter.update_state(y, pred)  # 调试输出  print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", )  # 可视化  with summary_writer.as_default():      tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235)def main():  """  主函数  :return: 无返回值  """  # 获取数据  train_db, test_db = get_data()  # 轮期  for epoch in range(iteration_num):      train(epoch, train_db)      test(epoch, test_db)if __name__ == "__main__":  main()

输出结果

Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 256) 200960 _________________________________________________________________ dense_1 (Dense) (None, 128) 32896 _________________________________________________________________ dense_2 (Dense) (None, 64) 8256 _________________________________________________________________ dense_3 (Dense) (None, 32) 2080 _________________________________________________________________ dense_4 (Dense) (None, 10) 330 ================================================================= Total params: 244,522 Trainable params: 244,522 Non-trainable params: 0 _________________________________________________________________ None 2021-06-14 18:01:27.399812: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) step: 0 Cross_Entropy: 591.5974 step: 100 Cross_Entropy: 196.49309 step: 200 Cross_Entropy: 125.2562 epoch: 1 Accuracy: 84.72999930381775 % step: 0 Cross_Entropy: 107.64579 step: 100 Cross_Entropy: 105.854385 step: 200 Cross_Entropy: 99.545975 epoch: 2 Accuracy: 85.83999872207642 % step: 0 Cross_Entropy: 95.42945 step: 100 Cross_Entropy: 91.366234 step: 200 Cross_Entropy: 90.84072 epoch: 3 Accuracy: 86.69999837875366 % step: 0 Cross_Entropy: 82.03317 step: 100 Cross_Entropy: 83.20552 step: 200 Cross_Entropy: 81.57012 epoch: 4 Accuracy: 86.11000180244446 % step: 0 Cross_Entropy: 82.94046 step: 100 Cross_Entropy: 77.56677 step: 200 Cross_Entropy: 76.996346 epoch: 5 Accuracy: 87.27999925613403 % step: 0 Cross_Entropy: 75.59219 step: 100 Cross_Entropy: 71.70899 step: 200 Cross_Entropy: 74.15144 epoch: 6 Accuracy: 87.29000091552734 % step: 0 Cross_Entropy: 76.65844 step: 100 Cross_Entropy: 70.09151 step: 200 Cross_Entropy: 70.84446 epoch: 7 Accuracy: 88.27999830245972 % step: 0 Cross_Entropy: 67.50707 step: 100 Cross_Entropy: 64.85907 step: 200 Cross_Entropy: 68.63099 epoch: 8 Accuracy: 88.41999769210815 % step: 0 Cross_Entropy: 65.50318 step: 100 Cross_Entropy: 62.2706 step: 200 Cross_Entropy: 63.80803 epoch: 9 Accuracy: 86.21000051498413 % step: 0 Cross_Entropy: 66.95486 step: 100 Cross_Entropy: 61.84385 step: 200 Cross_Entropy: 62.18851 epoch: 10 Accuracy: 88.45999836921692 % step: 0 Cross_Entropy: 59.779297 step: 100 Cross_Entropy: 58.602314 step: 200 Cross_Entropy: 59.837025 epoch: 11 Accuracy: 88.66000175476074 % step: 0 Cross_Entropy: 58.10068 step: 100 Cross_Entropy: 55.097878 step: 200 Cross_Entropy: 59.906315 epoch: 12 Accuracy: 88.70999813079834 % step: 0 Cross_Entropy: 57.584858 step: 100 Cross_Entropy: 54.95376 step: 200 Cross_Entropy: 55.797752 epoch: 13 Accuracy: 88.44000101089478 % step: 0 Cross_Entropy: 53.54782 step: 100 Cross_Entropy: 53.62939 step: 200 Cross_Entropy: 54.632828 epoch: 14 Accuracy: 87.02999949455261 % step: 0 Cross_Entropy: 54.387398 step: 100 Cross_Entropy: 52.323734 step: 200 Cross_Entropy: 53.968185 epoch: 15 Accuracy: 88.98000121116638 % step: 0 Cross_Entropy: 50.468914 step: 100 Cross_Entropy: 50.79311 step: 200 Cross_Entropy: 51.296227 epoch: 16 Accuracy: 88.67999911308289 % step: 0 Cross_Entropy: 48.753258 step: 100 Cross_Entropy: 46.809692 step: 200 Cross_Entropy: 48.08208 epoch: 17 Accuracy: 89.10999894142151 % step: 0 Cross_Entropy: 46.830627 step: 100 Cross_Entropy: 47.208813 step: 200 Cross_Entropy: 48.671318 epoch: 18 Accuracy: 88.77999782562256 % step: 0 Cross_Entropy: 46.15514 step: 100 Cross_Entropy: 45.026627 step: 200 Cross_Entropy: 45.371685 epoch: 19 Accuracy: 88.7399971485138 % step: 0 Cross_Entropy: 47.696465 step: 100 Cross_Entropy: 41.52749 step: 200 Cross_Entropy: 46.71362 epoch: 20 Accuracy: 89.56000208854675 % 。

可视化

一小时学会TensorFlow2之Fashion Mnist

一小时学会TensorFlow2之Fashion Mnist

一小时学会TensorFlow2之Fashion Mnist

到此这篇关于一小时学会TensorFlow2之Fashion Mnist的文章就介绍到这了,更多相关TensorFlow2 Fashion Mnist内容请搜索我以前的文章或继续浏览下面的相关文章希望大家以后多多支持我! 。

原文链接:https://iamarookie.blog.csdn.net/article/details/117917350 。

最后此篇关于一小时学会TensorFlow2之Fashion Mnist的文章就讲到这里了,如果你想了解更多关于一小时学会TensorFlow2之Fashion Mnist的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com