gpt4 book ai didi

Python使用UDP实现720p视频传输的操作

转载 作者:qq735679552 更新时间:2022-09-29 22:32:09 25 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章Python使用UDP实现720p视频传输的操作由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

1. 项目背景

视频传输: 在一台电脑上播放视频(捕捉摄像头画面),同局域网内另一台电脑上实时播放,尽量不卡顿.

先放最后的照片,和用gif展示一下视频效果.

Python使用UDP实现720p视频传输的操作

Python使用UDP实现720p视频传输的操作

传输视频可以采取图片或者流的形式,本文采取传输图片的形式,在1s之内显示多张图片从而形成连续的视频画面.

经费有限,所有实验均基于笔记本电脑.

使用的视频源是本机摄像头,以及进击的巨人720p资源.

2. 解决方案

1. 使用python的socket,使用opencv捕捉摄像头/视频的画面.

2. 原始的图片很大(720p的大小是1920*1080*3),整图就算压缩成jpg格式其大小也非常大。而udp最大只能传输65535字节大小的数据区,故对图片进行分块,分块过后的数据压缩成jpg格式,并对图片分块数据进行编号.

3. 实验检测表明,本文实验环境发送端不需要使用发送队列,基本上新生成的帧很快就能被socket传输掉.

4. 接收端使用多线程接收,每个线程是一个socket,接收过后的数据存储于数据片池.

5. 接收端另开一个线程,用于反复从数据片池 读取数据片,根据数据片的编号更新幕布,这里幕布是专门用于图像显示的一个数组,其维度是720p(1920*1080*3)。更新过后的结果暂存于图片池 。

6. 主线程反复从图片池读取图片,并显示.

3. 实现细节

3.1 tcp/udp的选择

为了实现低延迟,毫无疑问选取无连接的udp传输.

3.2 图片分片算法

这里其实也谈不上什么算法,就是将图片水平分割。这种做法的好处在于,分割后图片的编号可以和区域一一对应。本文没有探索更为复杂的图片分片算法.

Python使用UDP实现720p视频传输的操作

经过处理,图片变为一个个分片,如下:

Python使用UDP实现720p视频传输的操作

Python使用UDP实现720p视频传输的操作

Python使用UDP实现720p视频传输的操作

Python使用UDP实现720p视频传输的操作

对上述图片进行编号,很显然可以编号0,1,2,3,对于任意分块(例如2)在图像数组中对应的区域是frame[2*piece_size:(2+1)*piece_size],其中piece_size表示一片数据的大小.

这种对应关系方便解压后的图像还原操作.

3.3 jpg压缩

这其实是个很小的技术点,因为使用的压缩算法都是现成的。但是值得一提的是,jpg的压缩率是真的高,在实验数据上实现了10-20倍的压缩率.

使用了多线程压缩,压缩完过后,更新对应的桶,这里的桶实际上就是数据片.

Python使用UDP实现720p视频传输的操作

由主线程main thread反复从桶里取数据片(t1),每取1片发送一次,然后再取下一片(t2),直到所有桶都被取了一次(例子中有10片).

至此,一张图片的分片数据被全部取完,于是开始统计一些fps相关信息.

3.4 接收队列

接收端开了10个线程用于异步socket接收数据片.

为了保证接收端产生丝滑的视频效果,使用接收队列是个不错的选择。本文使用了2个队列的设计。实现数据接收的二级缓冲。示意图如下:

Python使用UDP实现720p视频传输的操作

这样一来,视频效果明显丝滑了很多.

4. 遇到的坑及解决办法

4.1. windows防火墙

巨坑,最好都关了.

Python使用UDP实现720p视频传输的操作

4.2. 路由器网络频段

同一台路由器的5g和2.4g频段有时候不能互相ping通,要确保两个电脑连接在同一频段上.

4.3. wifi配置

如果上述设置都对了,但是还是ping不通。将wifi连接设置成专用网络,也许就能解决问题.

Python使用UDP实现720p视频传输的操作

4.4. 硬件瓶颈

个人pc的性能是较大瓶颈,尤其是单机测验的时候(本地两个终端,一个发送、一个接收),cpu使用率分分钟到100%。听某个技术大哥说要使用gpu压缩.

Python使用UDP实现720p视频传输的操作

用两台电脑,一台接收一台发送之后,效果要好很多.

4.5. opencv读取摄像头大坑

由于摄像头驱动的关系,在我的电脑上需要设置以下两个变量,才能成功启用外置的720p摄像头.

?
1
2
os.environ[ "opencv_videoio_debug" ] = "1"
os.environ[ "opencv_videoio_priority_msmf" ] = "0"

即使如此,如果不做额外的设置,读出来的图片将是480p的(看起来很像是720p被压缩过后的)。所以如果要传输真·720p,还需要设置读出的图像大小,如下:

?
1
2
3
self .stream = cv2.videocapture( 1 ) # 读取第一个外置摄像头
self .stream. set (cv2.cap_prop_frame_width, 1280 )   # float
self .stream. set (cv2.cap_prop_frame_height, 720 )   # float

4.6. socket卡顿

不知道是不是我写的有问题,感觉多线程的socket会争抢资源(发送和接收的线程间,对应5.1节功能),造成接收端的画面显示将变得卡顿.

5. 尚未bug free的功能

5.1 使用tcp回传帧率信息

为了计算网络时延,采取类似伽利略测光速的方法。从数据包打包之前,到对方收到数据包之后,再将这个数据回传到发送方.

这样就不存在两台机器时间差校准的问题.

该算法的大致流程如下图所示.

Python使用UDP实现720p视频传输的操作

Python使用UDP实现720p视频传输的操作

这种计算方式应该是自己的实验环境下比较准确的方法了.

时延信息的反馈不需要特别快(比如200-500ms发送一次),所以使用tcp技术 。

其实tcp和udp在使用python编程的时候代码差距可以说极小… 。

但是!!! 。

自己目前在实现信息回传的时候,会莫名卡顿起来.

接收端建立回传的socket之后,甚至还没传输数据,整个程序运行起来就变得非常卡顿,这个让我比较苦恼,目前正在找bug. 。

5.2 拥塞控制 (流量控制)的算法

这部分的思想是流量控制,感谢评论区指正.

5.1节如果一并回传接收端队列状态信息。如果接收端队列太满,说明来不及处理视频帧了,从而对发送端的发送速度进行控制,才是“拥塞控制” 。

这个本来是想着和5.1综合起来用的,已经写好了,但是还没能真正展现价值,设计是否合理也值得商榷.

控制的是发送端的发送频率,从而实现接收端的流畅播放 。

思想和tcp的拥塞控制一样慢增长,快下降。如果接收端的队列一直处于较空的状态,则表明还有一定的性能剩余,此时可以缓慢加快发送的频率;如果检测到接收端队列中数据较多,表明发送速度太快来不及显示,这时候就大幅下降发送的频率.

这个拥塞控制的算法基于几个假设:

1.网络情况良好,丢包率比较低; 。

2接收端电脑的性能足够高,来得及处理解包、显示图像.

如果5.1能够正确实现,则应该根据网络时延的大小来控制发送的频率.

6. 总结

这个项目是一周的时间内完成的,目前还有点bug。小组内的成员分别在不同技术方向上进行了探索,收获都还挺大的。这篇博客就当一个项目总结吧,写的难免有纰漏之处.

github地址:https://github.com/820fans/udp-video-transfer 。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我。如有错误或未考虑完全的地方,望不吝赐教.

原文链接:https://blog.csdn.net/u013033845/article/details/86765598 。

最后此篇关于Python使用UDP实现720p视频传输的操作的文章就讲到这里了,如果你想了解更多关于Python使用UDP实现720p视频传输的操作的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com