gpt4 book ai didi

Flume环境部署和配置详解及案例大全

转载 作者:qq735679552 更新时间:2022-09-29 22:32:09 24 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章Flume环境部署和配置详解及案例大全由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

  1、什么是flume?   flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。flume 初始的发行版本目前被统称为 flume og(original generation),属于 cloudera。但随着 flume 功能的扩展,flume og 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 flume og 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 flume-728,对 flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码架构,重构后的版本统称为 flume ng(next generation);改动的另一原因是将 flume 纳入 apache 旗下,cloudera flume 改名为 apache flume。   flume的特点:   flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、hdfs、hbase等)的能力 。   flume的数据流由事件(event)贯穿始终。事件是flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些event由agent外部的source生成,当source捕获事件后会进行特定的格式化,然后source会把事件推入(单个或多个)channel中。你可以把channel看作是一个缓冲区,它将保存事件直到sink处理完该事件。sink负责持久化日志或者把事件推向另一个source。   flume的可靠性   当节点出现故障时,日志能够被传送到其他节点上而不会丢失。flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),besteffort(数据发送到接收方后,不会进行确认)。   flume的可恢复性:   还是靠channel。推荐使用filechannel,事件持久化在本地文件系统里(性能较差)。     flume的一些核心概念: agent使用jvm 运行flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。 client生产数据,运行在一个独立的线程。 source从client收集数据,传递给channel。 sink从channel收集数据,运行在一个独立线程。 channel连接 sources 和 sinks ,这个有点像一个队列。 events可以是日志记录、 avro 对象等。     flume以agent为最小的独立运行单位。一个agent就是一个jvm。单agent由source、sink和channel三大组件构成,如下图:

Flume环境部署和配置详解及案例大全

  值得注意的是,flume提供了大量内置的source、channel和sink类型。不同类型的source,channel和sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。sink可以把日志写入hdfs, hbase,甚至是另外一个source等等。flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持fan-in、fan-out、contextual routing、backup routes,这也正是nb之处。如下图所示

Flume环境部署和配置详解及案例大全

  2、flume的官方网站在哪里?    。

  3、在哪里下载?

  

  4、如何安装?     1)将下载的flume包,解压到/home/hadoop目录中,你就已经完成了50%:)简单吧 。

    2)修改 flume-env.sh 配置文件,主要是java_home变量设置 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
root@m1: /home/hadoop/flume-1 .5.0-bin # cp conf/flume-env.sh.template conf/flume-env.sh
root@m1: /home/hadoop/flume-1 .5.0-bin # vi conf/flume-env.sh
# licensed to the apache software foundation (asf) under one
# or more contributor license agreements. see the notice file
# distributed with this work for additional information
# regarding copyright ownership. the asf licenses this file
# to you under the apache license, version 2.0 (the
# "license"); you may not use this file except in compliance
# with the license. you may obtain a copy of the license at
#
#   http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
 
# if this file is placed at flume_conf_dir/flume-env.sh, it will be sourced
# during flume startup.
 
# enviroment variables can be set here.
 
java_home= /usr/lib/jvm/java-7-oracle
 
# give flume more memory and pre-allocate, enable remote monitoring via jmx
#java_opts="-xms100m -xmx200m -dcom.sun.management.jmxremote"
 
# note that the flume conf directory is always included in the classpath.
#flume_classpath=""

    3)验证是否安装成功 。

?
1
2
3
4
5
6
7
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng version
flume 1.5.0
source code repository: https: //git-wip-us .apache.org /repos/asf/flume .git
revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97
compiled by hshreedharan on wed may 7 14:49:18 pdt 2014
from source with checksum a01fe726e4380ba0c9f7a7d222db961f
root@m1: /home/hadoop #

    出现上面的信息,表示安装成功了       5、flume的案例     1)案例1:avro     avro可以发送一个给定的文件给flume,avro 源使用avro rpc机制。       a)创建agent配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop #vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# describe/configure the source
a1.sources.r1. type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 4141
 
# describe the sink
a1.sinks.k1. type = logger
 
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
 
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      b)启动flume agent a1 。

?
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -dflume.root.logger=info,console

      c)创建指定文件 。

?
1
root@m1: /home/hadoop # echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00

      d)使用avro-client发送文件 。

?
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -h m1 -p 4141 -f /home/hadoop/flume-1.5.0-bin/log.00

      f)在m1的控制台,可以看到以下信息,注意最后一行:

?
1
2
3
4
5
6
7
8
9
10
root@m1: /home/hadoop/flume-1 .5.0-bin /conf # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -dflume.root.logger=info,console
info: sourcing environment configuration script /home/hadoop/flume-1 .5.0-bin /conf/flume-env .sh
info: including hadoop libraries found via ( /home/hadoop/hadoop-2 .2.0 /bin/hadoop ) for hdfs access
info: excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-api-1 .7.5.jar from classpath
info: excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar from classpath
...
-08-10 10:43:25,112 (new i /o worker #1) [info - org.apache.avro.ipc.nettyserver$nettyserveravrohandler.handleupstream(nettyserver.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] unbound
-08-10 10:43:25,112 (new i /o worker #1) [info - org.apache.avro.ipc.nettyserver$nettyserveravrohandler.handleupstream(nettyserver.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] closed
-08-10 10:43:25,112 (new i /o worker #1) [info - org.apache.avro.ipc.nettyserver$nettyserveravrohandler.channelclosed(nettyserver.java:209)] connection to /192.168.1.50:59850 disconnected.
-08-10 10:43:26,718 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 68 65 6c 6c 6f 20 77 6f 72 6c 64        hello world }

    2)案例2:spool     spool监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点:     1) 拷贝到spool目录下的文件不可以再打开编辑。     2) spool目录下不可包含相应的子目录       a)创建agent配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1. type = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spooldir = /home/hadoop/flume-1 .5.0-bin /logs
a1.sources.r1.fileheader = true
# describe the sink
a1.sinks.k1. type = logger
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      b)启动flume agent a1 。

?
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -dflume.root.logger=info,console

      c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录 。

?
1
root@m1: /home/hadoop # echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log

      d)在m1的控制台,可以看到以下相关信息:

?
1
2
3
4
5
6
7
8
9
10
11
/08/10 11:37:13 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:13 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:14 info avro.reliablespoolingfileeventreader: preparing to move file /home/hadoop/flume-1.5.0-bin/logs/spool_text.log to /home/hadoop/flume-1.5.0-bin/logs/spool_text.log.completed
/08/10 11:37:14 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:14 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:14 info sink.loggersink: event: { headers:{file=/home/hadoop/flume-1.5.0-bin/logs/spool_text.log} body: 73 70 6f 6f 6c 20 74 65 73 74 31        spool test1 }
/08/10 11:37:15 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:15 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:16 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:16 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:17 info source.spooldirectorysource: spooling directory source runner has shutdown.

    3)案例3:exec     exec执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容       a)创建agent配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1. type = exec
a1.sources.r1.channels = c1
a1.sources.r1. command = tail -f /home/hadoop/flume-1 .5.0-bin /log_exec_tail
# describe the sink
a1.sinks.k1. type = logger
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      b)启动flume agent a1 。

?
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -dflume.root.logger=info,console

      c)生成足够多的内容在文件里 。

?
1
root@m1: /home/hadoop # for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done

      e)在m1的控制台,可以看到以下信息:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
-08-10 10:59:25,513 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 20 74 65 73 74    exec tail test }
-08-10 10:59:34,535 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 20 74 65 73 74    exec tail test }
-08-10 11:01:40,557 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 31          exec tail1 }
-08-10 11:01:41,180 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 32          exec tail2 }
-08-10 11:01:41,180 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 33          exec tail3 }
-08-10 11:01:41,181 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 34          exec tail4 }
-08-10 11:01:41,181 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 35          exec tail5 }
-08-10 11:01:41,181 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 36          exec tail6 }
....
....
....
-08-10 11:01:51,550 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 39 36        exec tail96 }
-08-10 11:01:51,550 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 39 37        exec tail97 }
-08-10 11:01:51,551 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 39 38        exec tail98 }
-08-10 11:01:51,551 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 39 39        exec tail99 }
-08-10 11:01:51,551 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 31 30 30       exec tail100 }

    4)案例4:syslogtcp     syslogtcp监听tcp的端口做为数据源       a)创建agent配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1. type = logger
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      b)启动flume agent a1 。

?
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -dflume.root.logger=info,console

      c)测试产生syslog 。

?
1
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140

      d)在m1的控制台,可以看到以下信息:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/08/10 11:41:45 info node.pollingpropertiesfileconfigurationprovider: reloading configuration file:/home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf
/08/10 11:41:45 info conf.flumeconfiguration: added sinks: k1 agent: a1
/08/10 11:41:45 info conf.flumeconfiguration: processing:k1
/08/10 11:41:45 info conf.flumeconfiguration: processing:k1
/08/10 11:41:45 info conf.flumeconfiguration: post-validation flume configuration contains configuration for agents: [a1]
/08/10 11:41:45 info node.abstractconfigurationprovider: creating channels
/08/10 11:41:45 info channel.defaultchannelfactory: creating instance of channel c1 type memory
/08/10 11:41:45 info node.abstractconfigurationprovider: created channel c1
/08/10 11:41:45 info source.defaultsourcefactory: creating instance of source r1, type syslogtcp
/08/10 11:41:45 info sink.defaultsinkfactory: creating instance of sink: k1, type: logger
/08/10 11:41:45 info node.abstractconfigurationprovider: channel c1 connected to [r1, k1]
/08/10 11:41:45 info node.application: starting new configuration:{ sourcerunners:{r1=eventdrivensourcerunner: { source:org.apache.flume.source.syslogtcpsource{name:r1,state:idle} }} sinkrunners:{k1=sinkrunner: { policy:org.apache.flume.sink.defaultsinkprocessor@6538b14 countergroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.memorychannel{name: c1}} }
/08/10 11:41:45 info node.application: starting channel c1
/08/10 11:41:45 info instrumentation.monitoredcountergroup: monitored counter group for type: channel, name: c1: successfully registered new mbean.
/08/10 11:41:45 info instrumentation.monitoredcountergroup: component type: channel, name: c1 started
/08/10 11:41:45 info node.application: starting sink k1
/08/10 11:41:45 info node.application: starting source r1
/08/10 11:41:45 info source.syslogtcpsource: syslog tcp source starting...
/08/10 11:42:15 warn source.syslogutils: event created from invalid syslog data.
/08/10 11:42:15 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 68 65 6c 6c 6f 20 69 64 6f 61 6c 6c 2e 6f 72 67 hello idoall.org }

    5)案例5:jsonhandler       a)创建agent配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1. type = org.apache.flume. source .http.httpsource
a1.sources.r1.port = 8888
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1. type = logger
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      b)启动flume agent a1 。

?
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -dflume.root.logger=info,console

      c)生成json 格式的post request 。

?
1
root@m1: /home/hadoop # curl -x post -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888

      d)在m1的控制台,可以看到以下信息: / 。

?
1
2
3
4
5
6
7
8
9
10
11
08/10 11:49:59 info node.application: starting channel c1
/08/10 11:49:59 info instrumentation.monitoredcountergroup: monitored counter group for type: channel, name: c1: successfully registered new mbean.
/08/10 11:49:59 info instrumentation.monitoredcountergroup: component type: channel, name: c1 started
/08/10 11:49:59 info node.application: starting sink k1
/08/10 11:49:59 info node.application: starting source r1
/08/10 11:49:59 info mortbay.log: logging to org.slf4j.impl.log4jloggeradapter(org.mortbay.log) via org.mortbay.log.slf4jlog
/08/10 11:49:59 info mortbay.log: jetty-6.1.26
/08/10 11:50:00 info mortbay.log: started selectchannelconnector@0.0.0.0:8888
/08/10 11:50:00 info instrumentation.monitoredcountergroup: monitored counter group for type: source, name: r1: successfully registered new mbean.
/08/10 11:50:00 info instrumentation.monitoredcountergroup: component type: source, name: r1 started
/08/10 12:14:32 info sink.loggersink: event: { headers:{b=b1, a=a1} body: 69 64 6f 61 6c 6c 2e 6f 72 67 5f 62 6f 64 79  idoall.org_body }

    6)案例6:hadoop sink     其中关于hadoop2.2.0部分的安装部署,请参考文章《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》       a)创建agent配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1. type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs: //m1 :9000 /user/flume/syslogtcp
a1.sinks.k1.hdfs.fileprefix = syslog
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundvalue = 10
a1.sinks.k1.hdfs.roundunit = minute
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      b)启动flume agent a1 。

?
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -dflume.root.logger=info,console

      c)测试产生syslog 。

?
1
root@m1: /home/hadoop # echo "hello idoall flume -> hadoop testing one" | nc localhost 5140

      d)在m1的控制台,可以看到以下信息:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/08/10 12:20:39 info instrumentation.monitoredcountergroup: monitored counter group for type: channel, name: c1: successfully registered new mbean.
/08/10 12:20:39 info instrumentation.monitoredcountergroup: component type: channel, name: c1 started
/08/10 12:20:39 info node.application: starting sink k1
/08/10 12:20:39 info node.application: starting source r1
/08/10 12:20:39 info instrumentation.monitoredcountergroup: monitored counter group for type: sink, name: k1: successfully registered new mbean.
/08/10 12:20:39 info instrumentation.monitoredcountergroup: component type: sink, name: k1 started
/08/10 12:20:39 info source.syslogtcpsource: syslog tcp source starting...
/08/10 12:21:46 warn source.syslogutils: event created from invalid syslog data.
/08/10 12:21:49 info hdfs.hdfssequencefile: writeformat = writable, userawlocalfilesystem = false
/08/10 12:21:49 info hdfs.bucketwriter: creating hdfs://m1:9000/user/flume/syslogtcp//syslog.1407644509504.tmp
/08/10 12:22:20 info hdfs.bucketwriter: closing hdfs://m1:9000/user/flume/syslogtcp//syslog.1407644509504.tmp
/08/10 12:22:20 info hdfs.bucketwriter: close tries incremented
/08/10 12:22:20 info hdfs.bucketwriter: renaming hdfs://m1:9000/user/flume/syslogtcp/syslog.1407644509504.tmp to hdfs://m1:9000/user/flume/syslogtcp/syslog.1407644509504
/08/10 12:22:20 info hdfs.hdfseventsink: writer callback called.

      e)在m1上再打开一个窗口,去hadoop上检查文件是否生成 。

?
1
2
3
4
5
root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp
found 1 items
-rw-r--r--  3 root supergroup    155 2014-08-10 12:22 /user/flume/syslogtcp/syslog .1407644509504
root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/syslog.1407644509504
seq !org.apache.hadoop.io.longwritable"org.apache.hadoop.io.byteswritable^;>gv$hello idoall flume -> hadoop testing one

    7)案例7:file roll sink       a)创建agent配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5555
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1. type = file_roll
a1.sinks.k1.sink.directory = /home/hadoop/flume-1 .5.0-bin /logs
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      b)启动flume agent a1 。

?
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -dflume.root.logger=info,console

      c)测试产生log 。

?
1
2
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5555
root@m1: /home/hadoop # echo "hello idoall.org syslog 2" | nc localhost 5555

      d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件 。

?
1
2
3
4
5
6
7
8
9
10
root@m1:/home/hadoop# ll /home/hadoop/flume-1.5.0-bin/logs
总用量 272
drwxr-xr-x 3 root root  4096 aug 10 12:50 ./
drwxr-xr-x 9 root root  4096 aug 10 10:59 ../
-rw-r--r-- 1 root root   50 aug 10 12:49 1407646164782-1
-rw-r--r-- 1 root root   0 aug 10 12:49 1407646164782-2
-rw-r--r-- 1 root root   0 aug 10 12:50 1407646164782-3
root@m1:/home/hadoop# cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2
hello idoall.org syslog
hello idoall.org syslog 2

    8)案例8:replicating channel selector     flume支持fan out流从一个源到多个通道。有两种模式的fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。fan out流需要指定源和fan out通道的规则。     这次我们需要用到m1,m2两台机器       a)在m1创建replicating_channel_selector配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# describe/configure the source
a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector. type = replicating
# describe the sink
a1.sinks.k1. type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname = m1
a1.sinks.k1.port = 5555
a1.sinks.k2. type = avro
a1.sinks.k2.channel = c2
a1.sinks.k2. hostname = m2
a1.sinks.k2.port = 5555
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
a1.channels.c2. type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactioncapacity = 100

      b)在m1创建replicating_channel_selector_avro配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1. type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# describe the sink
a1.sinks.k1. type = logger
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      c)在m1上将2个配置文件复制到m2上一份 。

?
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector_avro.conf<br>

      d)打开4个窗口,在m1和m2上同时启动两个flume agent 。

?
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector_avro.conf -n a1 -dflume.root.logger=info,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector.conf -n a1 -dflume.root.logger=info,console

      e)然后在m1或m2的任意一台机器上,测试产生syslog 。

?
1
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140

      f)在m1和m2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:

?
1
2
3
4
5
6
7
8
/08/10 14:08:18 info ipc.nettyserver: connection to /192.168.1.51:46844 disconnected.
/08/10 14:08:52 info ipc.nettyserver: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] open
/08/10 14:08:52 info ipc.nettyserver: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] bound: /192.168.1.50:5555
/08/10 14:08:52 info ipc.nettyserver: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] connected: /192.168.1.50:35873
/08/10 14:08:59 info ipc.nettyserver: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] open
/08/10 14:08:59 info ipc.nettyserver: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] bound: /192.168.1.50:5555
/08/10 14:08:59 info ipc.nettyserver: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] connected: /192.168.1.51:46858
/08/10 14:09:20 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 68 65 6c 6c 6f 20 69 64 6f 61 6c 6c 2e 6f 72 67 hello idoall.org }

                      9)案例9:multiplexing channel selector       a)在m1创建multiplexing_channel_selector配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# describe/configure the source
a1.sources.r1. type = org.apache.flume. source .http.httpsource
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector. type = multiplexing
a1.sources.r1.selector.header = type
#映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。
a1.sources.r1.selector.mapping.baidu = c1
a1.sources.r1.selector.mapping.ali = c2
a1.sources.r1.selector.default = c1
# describe the sink
a1.sinks.k1. type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname = m1
a1.sinks.k1.port = 5555
a1.sinks.k2. type = avro
a1.sinks.k2.channel = c2
a1.sinks.k2. hostname = m2
a1.sinks.k2.port = 5555
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
a1.channels.c2. type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactioncapacity = 100

      b)在m1创建multiplexing_channel_selector_avro配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1. type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# describe the sink
a1.sinks.k1. type = logger
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      c)将2个配置文件复制到m2上一份 。

?
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector_avro.conf

      d)打开4个窗口,在m1和m2上同时启动两个flume agent 。

?
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector_avro.conf -n a1 -dflume.root.logger=info,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector.conf -n a1 -dflume.root.logger=info,console

      e)然后在m1或m2的任意一台机器上,测试产生syslog 。

?
1
root@m1: /home/hadoop # curl -x post -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_test1"}]' http://localhost:5140 && curl -x post -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_test2"}]' http://localhost:5140 && curl -x post -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_test3"}]' http://localhost:5140

      f)在m1的sink窗口,可以看到以下信息:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14/08/10 14:32:21 info node.application: starting sink k1
14/08/10 14:32:21 info node.application: starting source r1
14/08/10 14:32:21 info source.avrosource: starting avro source r1: { bindaddress: 0.0.0.0, port: 5555 }...
14/08/10 14:32:21 info instrumentation.monitoredcountergroup: monitored counter group for type: source, name: r1: successfully registered new mbean.
14/08/10 14:32:21 info instrumentation.monitoredcountergroup: component type: source, name: r1 started
14/08/10 14:32:21 info source.avrosource: avro source r1 started.
14/08/10 14:32:36 info ipc.nettyserver: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] open
14/08/10 14:32:36 info ipc.nettyserver: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] bound: /192.168.1.50:5555
14/08/10 14:32:36 info ipc.nettyserver: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] connected: /192.168.1.50:35916
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] open
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] bound: /192.168.1.50:5555
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] connected: /192.168.1.51:46945
14/08/10 14:34:11 info sink.loggersink: event: { headers:{type=baidu} body: 69 64 6f 61 6c 6c 5f 54 45 53 54 31       idoall_test1 }
14/08/10 14:34:57 info sink.loggersink: event: { headers:{type=qq} body: 69 64 6f 61 6c 6c 5f 54 45 53 54 33       idoall_test3 }

      g)在m2的sink窗口,可以看到以下信息:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14/08/10 14:32:27 info node.application: starting sink k1
14/08/10 14:32:27 info node.application: starting source r1
14/08/10 14:32:27 info source.avrosource: starting avro source r1: { bindaddress: 0.0.0.0, port: 5555 }...
14/08/10 14:32:27 info instrumentation.monitoredcountergroup: monitored counter group for type: source, name: r1: successfully registered new mbean.
14/08/10 14:32:27 info instrumentation.monitoredcountergroup: component type: source, name: r1 started
14/08/10 14:32:27 info source.avrosource: avro source r1 started.
14/08/10 14:32:36 info ipc.nettyserver: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] open
14/08/10 14:32:36 info ipc.nettyserver: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 14:32:36 info ipc.nettyserver: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] connected: /192.168.1.50:38104
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] open
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] connected: /192.168.1.51:48599
14/08/10 14:34:33 info sink.loggersink: event: { headers:{type=ali} body: 69 64 6f 61 6c 6c 5f 54 45 53 54 32       idoall_test2 }

    可以看到,根据header中不同的条件分布到不同的channel上       10)案例10:flume sink processors     failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。         a)在m1创建flume_sink_processors配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
 
#这个是配置failover的关键,需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
#处理的类型是failover
a1.sinkgroups.g1.processor. type = failover
#优先级,数字越大优先级越高,每个sink的优先级必须不相同
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
#设置为10秒,当然可以根据你的实际状况更改成更快或者很慢
a1.sinkgroups.g1.processor.maxpenalty = 10000
 
# describe/configure the source
a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector. type = replicating
 
 
# describe the sink
a1.sinks.k1. type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type = avro
a1.sinks.k2.channel = c2
a1.sinks.k2. hostname = m2
a1.sinks.k2.port = 5555
 
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
 
a1.channels.c2. type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactioncapacity = 100

      b)在m1创建flume_sink_processors_avro配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# describe/configure the source
a1.sources.r1. type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# describe the sink
a1.sinks.k1. type = logger
 
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
 
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      c)将2个配置文件复制到m2上一份 。

?
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf

      d)打开4个窗口,在m1和m2上同时启动两个flume agent 。

?
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf -n a1 -dflume.root.logger=info,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors.conf -n a1 -dflume.root.logger=info,console

      e)然后在m1或m2的任意一台机器上,测试产生log 。

?
1
root@m1: /home/hadoop # echo "idoall.org test1 failover" | nc localhost 5140

      f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:

?
1
2
3
4
5
14/08/10 15:02:46 info ipc.nettyserver: connection to /192.168.1.51:48692 disconnected.
14/08/10 15:03:12 info ipc.nettyserver: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] open
14/08/10 15:03:12 info ipc.nettyserver: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 15:03:12 info ipc.nettyserver: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] connected: /192.168.1.51:48704
14/08/10 15:03:26 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 31 idoall.org test1 }

      g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据:

?
1
root@m1: /home/hadoop # echo "idoall.org test2 failover" | nc localhost 5140

      h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据:

?
1
2
3
4
5
6
14/08/10 15:02:46 info ipc.nettyserver: connection to /192.168.1.51:47036 disconnected.
14/08/10 15:03:12 info ipc.nettyserver: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] open
14/08/10 15:03:12 info ipc.nettyserver: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] bound: /192.168.1.50:5555
14/08/10 15:03:12 info ipc.nettyserver: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] connected: /192.168.1.51:47048
14/08/10 15:07:56 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 31 idoall.org test1 }
14/08/10 15:07:56 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 32 idoall.org test2 }

      i)我们再在m2的sink窗口中,启动sink:

?
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf -n a1 -dflume.root.logger=info,console

      j)输入两批测试数据:

?
1
root@m1: /home/hadoop # echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140

     k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
14/08/10 15:09:47 info node.application: starting sink k1
14/08/10 15:09:47 info node.application: starting source r1
14/08/10 15:09:47 info source.avrosource: starting avro source r1: { bindaddress: 0.0.0.0, port: 5555 }...
14/08/10 15:09:47 info instrumentation.monitoredcountergroup: monitored counter group for type: source, name: r1: successfully registered new mbean.
14/08/10 15:09:47 info instrumentation.monitoredcountergroup: component type: source, name: r1 started
14/08/10 15:09:47 info source.avrosource: avro source r1 started.
14/08/10 15:09:54 info ipc.nettyserver: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] open
14/08/10 15:09:54 info ipc.nettyserver: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 15:09:54 info ipc.nettyserver: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] connected: /192.168.1.51:48741
14/08/10 15:09:57 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 32 idoall.org test2 }
14/08/10 15:10:43 info ipc.nettyserver: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] open
14/08/10 15:10:43 info ipc.nettyserver: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 15:10:43 info ipc.nettyserver: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] connected: /192.168.1.50:38166
14/08/10 15:10:43 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 33 idoall.org test3 }
14/08/10 15:10:43 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 34 idoall.org test4 }

      11)案例11:load balancing sink processor     load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。         a)在m1创建load_balancing_sink_processors配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1
 
#这个是配置load balancing的关键,需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor. type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = round_robin
 
# describe/configure the source
a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1
 
 
# describe the sink
a1.sinks.k1. type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type = avro
a1.sinks.k2.channel = c1
a1.sinks.k2. hostname = m2
a1.sinks.k2.port = 5555
 
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100

      b)在m1创建load_balancing_sink_processors_avro配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# describe/configure the source
a1.sources.r1. type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# describe the sink
a1.sinks.k1. type = logger
 
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
 
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      c)将2个配置文件复制到m2上一份 。

?
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors_avro.conf

      d)打开4个窗口,在m1和m2上同时启动两个flume agent 。

?
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors_avro.conf -n a1 -dflume.root.logger=info,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors.conf -n a1 -dflume.root.logger=info,console

      e)然后在m1或m2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上 。

?
1
2
3
4
root@m1: /home/hadoop # echo "idoall.org test1" | nc localhost 5140
root@m1: /home/hadoop # echo "idoall.org test2" | nc localhost 5140
root@m1: /home/hadoop # echo "idoall.org test3" | nc localhost 5140
root@m1: /home/hadoop # echo "idoall.org test4" | nc localhost 5140

      f)在m1的sink窗口,可以看到以下信息:

?
1
2
14/08/10 15:35:29 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 32 idoall.org test2 }
14/08/10 15:35:33 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 34 idoall.org test4 }

      g)在m2的sink窗口,可以看到以下信息:

?
1
2
14/08/10 15:35:27 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 31 idoall.org test1 }
14/08/10 15:35:29 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 33 idoall.org test3 }

    说明轮询模式起到了作用。       12)案例12:hbase sink         a)在测试之前,请先参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动         b)然后将以下文件复制到flume中:

?
1
2
3
4
5
6
7
8
cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/protobuf-java-2 .5.0.jar /home/hadoop/flume-1 .5.0-bin /lib
cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-client-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-common-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-protocol-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-server-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop2-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib @@@
cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/htrace-core-2 .04.jar /home/hadoop/flume-1 .5.0-bin /lib

      c)确保test_idoall_org表在hbase中已经存在,test_idoall_org表的格式以及字段请参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》中关于hbase部分的建表代码。         d)在m1创建hbase_simple配置文件 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# describe/configure the source
a1.sources.r1. type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# describe the sink
a1.sinks.k1. type = logger
a1.sinks.k1. type = hbase
a1.sinks.k1.table = test_idoall_org
a1.sinks.k1.columnfamily = name
a1.sinks.k1.column = idoall
a1.sinks.k1.serializer = org.apache.flume.sink.hbase.regexhbaseeventserializer
a1.sinks.k1.channel = memorychannel
 
# use a channel which buffers events in memory
a1.channels.c1. type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
 
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

      e)启动flume agent 。

?
1
/home/hadoop/flume-1 .5.0-bin /bin/flume-ng agent -c . -f /home/hadoop/flume-1 .5.0-bin /conf/hbase_simple .conf -n a1 -dflume.root.logger=info,console

      f)测试产生syslog 。

?
1
root@m1: /home/hadoop # echo "hello idoall.org from flume" | nc localhost 5140

      g)这时登录到hbase中,可以发现新数据已经插入 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
root@m1: /home/hadoop # /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell
2014-08-10 16:09:48,984 info [main] configuration.deprecation: hadoop.native.lib is deprecated. instead, use io.native.lib.available
hbase shell; enter 'help<return>' for list of supported commands.
type "exit<return>" to leave the hbase shell
version 0.96.2-hadoop2, r1581096, mon mar 24 16:03:18 pdt 2014
 
hbase(main):001:0> list
table                                                                                                        
slf4j: class path contains multiple slf4j bindings.
slf4j: found binding in [jar: file : /home/hadoop/hbase-0 .96.2-hadoop2 /lib/slf4j-log4j12-1 .6.4.jar! /org/slf4j/impl/staticloggerbinder .class]
slf4j: found binding in [jar: file : /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar! /org/slf4j/impl/staticloggerbinder .class]
slf4j: see http: //www .slf4j.org /codes .html #multiple_bindings for an explanation.
hbase2hive_idoall                                                                                                  
hive2hbase_idoall                                                                                                  
test_idoall_org                                                                                                   
3 row(s) in 2.6880 seconds
 
=> [ "hbase2hive_idoall" , "hive2hbase_idoall" , "test_idoall_org" ]
hbase(main):002:0> scan "test_idoall_org"
row                          column+cell                                                                          
  10086                         column=name:idoall, timestamp=1406424831473, value=idoallvalue                                                
1 row(s) in 0.0550 seconds
 
hbase(main):003:0> scan "test_idoall_org"
row                          column+cell                                                                          
  10086                         column=name:idoall, timestamp=1406424831473, value=idoallvalue                                                
  1407658495588-xbqcozrkk8-0              column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume                                        
2 row(s) in 0.0200 seconds
 
hbase(main):004:0> quit

    经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧。       这篇文章做为一个笔记,希望能够对刚入门的同学起到帮助作用.

最后此篇关于Flume环境部署和配置详解及案例大全的文章就讲到这里了,如果你想了解更多关于Flume环境部署和配置详解及案例大全的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com