- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章Flume环境部署和配置详解及案例大全由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
1、什么是flume? flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。flume 初始的发行版本目前被统称为 flume og(original generation),属于 cloudera。但随着 flume 功能的扩展,flume og 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 flume og 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 flume-728,对 flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码架构,重构后的版本统称为 flume ng(next generation);改动的另一原因是将 flume 纳入 apache 旗下,cloudera flume 改名为 apache flume。 flume的特点: flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、hdfs、hbase等)的能力 。 flume的数据流由事件(event)贯穿始终。事件是flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些event由agent外部的source生成,当source捕获事件后会进行特定的格式化,然后source会把事件推入(单个或多个)channel中。你可以把channel看作是一个缓冲区,它将保存事件直到sink处理完该事件。sink负责持久化日志或者把事件推向另一个source。 flume的可靠性 当节点出现故障时,日志能够被传送到其他节点上而不会丢失。flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),besteffort(数据发送到接收方后,不会进行确认)。 flume的可恢复性: 还是靠channel。推荐使用filechannel,事件持久化在本地文件系统里(性能较差)。 flume的一些核心概念: agent使用jvm 运行flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。 client生产数据,运行在一个独立的线程。 source从client收集数据,传递给channel。 sink从channel收集数据,运行在一个独立线程。 channel连接 sources 和 sinks ,这个有点像一个队列。 events可以是日志记录、 avro 对象等。 flume以agent为最小的独立运行单位。一个agent就是一个jvm。单agent由source、sink和channel三大组件构成,如下图:
值得注意的是,flume提供了大量内置的source、channel和sink类型。不同类型的source,channel和sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。sink可以把日志写入hdfs, hbase,甚至是另外一个source等等。flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持fan-in、fan-out、contextual routing、backup routes,这也正是nb之处。如下图所示
2、flume的官方网站在哪里? 。
3、在哪里下载?
4、如何安装? 1)将下载的flume包,解压到/home/hadoop目录中,你就已经完成了50%:)简单吧 。
2)修改 flume-env.sh 配置文件,主要是java_home变量设置 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
root@m1:
/home/hadoop/flume-1
.5.0-bin
# cp conf/flume-env.sh.template conf/flume-env.sh
root@m1:
/home/hadoop/flume-1
.5.0-bin
# vi conf/flume-env.sh
# licensed to the apache software foundation (asf) under one
# or more contributor license agreements. see the notice file
# distributed with this work for additional information
# regarding copyright ownership. the asf licenses this file
# to you under the apache license, version 2.0 (the
# "license"); you may not use this file except in compliance
# with the license. you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
# if this file is placed at flume_conf_dir/flume-env.sh, it will be sourced
# during flume startup.
# enviroment variables can be set here.
java_home=
/usr/lib/jvm/java-7-oracle
# give flume more memory and pre-allocate, enable remote monitoring via jmx
#java_opts="-xms100m -xmx200m -dcom.sun.management.jmxremote"
# note that the flume conf directory is always included in the classpath.
#flume_classpath=""
|
3)验证是否安装成功 。
1
2
3
4
5
6
7
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng version
flume 1.5.0
source
code repository: https:
//git-wip-us
.apache.org
/repos/asf/flume
.git
revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97
compiled by hshreedharan on wed may 7 14:49:18 pdt 2014
from
source
with checksum a01fe726e4380ba0c9f7a7d222db961f
root@m1:
/home/hadoop
#
|
出现上面的信息,表示安装成功了 5、flume的案例 1)案例1:avro avro可以发送一个给定的文件给flume,avro 源使用avro rpc机制。 a)创建agent配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
root@m1:
/home/hadoop
#vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 4141
# describe the sink
a1.sinks.k1.
type
= logger
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
b)启动flume agent a1 。
1
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -dflume.root.logger=info,console
|
c)创建指定文件 。
1
|
root@m1:
/home/hadoop
# echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00
|
d)使用avro-client发送文件 。
1
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -h m1 -p 4141 -f /home/hadoop/flume-1.5.0-bin/log.00
|
f)在m1的控制台,可以看到以下信息,注意最后一行:
1
2
3
4
5
6
7
8
9
10
|
root@m1:
/home/hadoop/flume-1
.5.0-bin
/conf
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -dflume.root.logger=info,console
info: sourcing environment configuration script
/home/hadoop/flume-1
.5.0-bin
/conf/flume-env
.sh
info: including hadoop libraries found via (
/home/hadoop/hadoop-2
.2.0
/bin/hadoop
)
for
hdfs access
info: excluding
/home/hadoop/hadoop-2
.2.0
/share/hadoop/common/lib/slf4j-api-1
.7.5.jar from classpath
info: excluding
/home/hadoop/hadoop-2
.2.0
/share/hadoop/common/lib/slf4j-log4j12-1
.7.5.jar from classpath
...
-08-10 10:43:25,112 (new i
/o
worker
#1) [info - org.apache.avro.ipc.nettyserver$nettyserveravrohandler.handleupstream(nettyserver.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] unbound
-08-10 10:43:25,112 (new i
/o
worker
#1) [info - org.apache.avro.ipc.nettyserver$nettyserveravrohandler.handleupstream(nettyserver.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] closed
-08-10 10:43:25,112 (new i
/o
worker
#1) [info - org.apache.avro.ipc.nettyserver$nettyserveravrohandler.channelclosed(nettyserver.java:209)] connection to /192.168.1.50:59850 disconnected.
-08-10 10:43:26,718 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 68 65 6c 6c 6f 20 77 6f 72 6c 64 hello world }
|
2)案例2:spool spool监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点: 1) 拷贝到spool目录下的文件不可以再打开编辑。 2) spool目录下不可包含相应的子目录 a)创建agent配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spooldir =
/home/hadoop/flume-1
.5.0-bin
/logs
a1.sources.r1.fileheader =
true
# describe the sink
a1.sinks.k1.
type
= logger
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
b)启动flume agent a1 。
1
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -dflume.root.logger=info,console
|
c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录 。
1
|
root@m1:
/home/hadoop
# echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log
|
d)在m1的控制台,可以看到以下相关信息:
1
2
3
4
5
6
7
8
9
10
11
|
/08/10 11:37:13 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:13 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:14 info avro.reliablespoolingfileeventreader: preparing to move file /home/hadoop/flume-1.5.0-bin/logs/spool_text.log to /home/hadoop/flume-1.5.0-bin/logs/spool_text.log.completed
/08/10 11:37:14 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:14 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:14 info sink.loggersink: event: { headers:{file=/home/hadoop/flume-1.5.0-bin/logs/spool_text.log} body: 73 70 6f 6f 6c 20 74 65 73 74 31 spool test1 }
/08/10 11:37:15 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:15 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:16 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:16 info source.spooldirectorysource: spooling directory source runner has shutdown.
/08/10 11:37:17 info source.spooldirectorysource: spooling directory source runner has shutdown.
|
3)案例3:exec exec执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容 a)创建agent配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
=
exec
a1.sources.r1.channels = c1
a1.sources.r1.
command
=
tail
-f
/home/hadoop/flume-1
.5.0-bin
/log_exec_tail
# describe the sink
a1.sinks.k1.
type
= logger
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
b)启动flume agent a1 。
1
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -dflume.root.logger=info,console
|
c)生成足够多的内容在文件里 。
1
|
root@m1:
/home/hadoop
# for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done
|
e)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
-08-10 10:59:25,513 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 20 74 65 73 74 exec tail test }
-08-10 10:59:34,535 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 20 74 65 73 74 exec tail test }
-08-10 11:01:40,557 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 31 exec tail1 }
-08-10 11:01:41,180 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 32 exec tail2 }
-08-10 11:01:41,180 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 33 exec tail3 }
-08-10 11:01:41,181 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 34 exec tail4 }
-08-10 11:01:41,181 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 35 exec tail5 }
-08-10 11:01:41,181 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 36 exec tail6 }
....
....
....
-08-10 11:01:51,550 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 39 36 exec tail96 }
-08-10 11:01:51,550 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 39 37 exec tail97 }
-08-10 11:01:51,551 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 39 38 exec tail98 }
-08-10 11:01:51,551 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 39 39 exec tail99 }
-08-10 11:01:51,551 (sinkrunner-pollingrunner-defaultsinkprocessor) [info - org.apache.flume.sink.loggersink.process(loggersink.java:70)] event: { headers:{} body: 65 78 65 63 20 74 61 69 6c 31 30 30 exec tail100 }
|
4)案例4:syslogtcp syslogtcp监听tcp的端口做为数据源 a)创建agent配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1.
type
= logger
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
b)启动flume agent a1 。
1
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -dflume.root.logger=info,console
|
c)测试产生syslog 。
1
|
root@m1:
/home/hadoop
# echo "hello idoall.org syslog" | nc localhost 5140
|
d)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
/08/10 11:41:45 info node.pollingpropertiesfileconfigurationprovider: reloading configuration file:/home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf
/08/10 11:41:45 info conf.flumeconfiguration: added sinks: k1 agent: a1
/08/10 11:41:45 info conf.flumeconfiguration: processing:k1
/08/10 11:41:45 info conf.flumeconfiguration: processing:k1
/08/10 11:41:45 info conf.flumeconfiguration: post-validation flume configuration contains configuration for agents: [a1]
/08/10 11:41:45 info node.abstractconfigurationprovider: creating channels
/08/10 11:41:45 info channel.defaultchannelfactory: creating instance of channel c1 type memory
/08/10 11:41:45 info node.abstractconfigurationprovider: created channel c1
/08/10 11:41:45 info source.defaultsourcefactory: creating instance of source r1, type syslogtcp
/08/10 11:41:45 info sink.defaultsinkfactory: creating instance of sink: k1, type: logger
/08/10 11:41:45 info node.abstractconfigurationprovider: channel c1 connected to [r1, k1]
/08/10 11:41:45 info node.application: starting new configuration:{ sourcerunners:{r1=eventdrivensourcerunner: { source:org.apache.flume.source.syslogtcpsource{name:r1,state:idle} }} sinkrunners:{k1=sinkrunner: { policy:org.apache.flume.sink.defaultsinkprocessor@6538b14 countergroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.memorychannel{name: c1}} }
/08/10 11:41:45 info node.application: starting channel c1
/08/10 11:41:45 info instrumentation.monitoredcountergroup: monitored counter group for type: channel, name: c1: successfully registered new mbean.
/08/10 11:41:45 info instrumentation.monitoredcountergroup: component type: channel, name: c1 started
/08/10 11:41:45 info node.application: starting sink k1
/08/10 11:41:45 info node.application: starting source r1
/08/10 11:41:45 info source.syslogtcpsource: syslog tcp source starting...
/08/10 11:42:15 warn source.syslogutils: event created from invalid syslog data.
/08/10 11:42:15 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 68 65 6c 6c 6f 20 69 64 6f 61 6c 6c 2e 6f 72 67 hello idoall.org }
|
5)案例5:jsonhandler a)创建agent配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= org.apache.flume.
source
.http.httpsource
a1.sources.r1.port = 8888
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1.
type
= logger
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
b)启动flume agent a1 。
1
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -dflume.root.logger=info,console
|
c)生成json 格式的post request 。
1
|
root@m1:
/home/hadoop
# curl -x post -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888
|
d)在m1的控制台,可以看到以下信息: / 。
1
2
3
4
5
6
7
8
9
10
11
|
08/10 11:49:59 info node.application: starting channel c1
/08/10 11:49:59 info instrumentation.monitoredcountergroup: monitored counter group for type: channel, name: c1: successfully registered new mbean.
/08/10 11:49:59 info instrumentation.monitoredcountergroup: component type: channel, name: c1 started
/08/10 11:49:59 info node.application: starting sink k1
/08/10 11:49:59 info node.application: starting source r1
/08/10 11:49:59 info mortbay.log: logging to org.slf4j.impl.log4jloggeradapter(org.mortbay.log) via org.mortbay.log.slf4jlog
/08/10 11:49:59 info mortbay.log: jetty-6.1.26
/08/10 11:50:00 info mortbay.log: started selectchannelconnector@0.0.0.0:8888
/08/10 11:50:00 info instrumentation.monitoredcountergroup: monitored counter group for type: source, name: r1: successfully registered new mbean.
/08/10 11:50:00 info instrumentation.monitoredcountergroup: component type: source, name: r1 started
/08/10 12:14:32 info sink.loggersink: event: { headers:{b=b1, a=a1} body: 69 64 6f 61 6c 6c 2e 6f 72 67 5f 62 6f 64 79 idoall.org_body }
|
6)案例6:hadoop sink 其中关于hadoop2.2.0部分的安装部署,请参考文章《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》 a)创建agent配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1.
type
= hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs:
//m1
:9000
/user/flume/syslogtcp
a1.sinks.k1.hdfs.fileprefix = syslog
a1.sinks.k1.hdfs.round =
true
a1.sinks.k1.hdfs.roundvalue = 10
a1.sinks.k1.hdfs.roundunit = minute
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
b)启动flume agent a1 。
1
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -dflume.root.logger=info,console
|
c)测试产生syslog 。
1
|
root@m1:
/home/hadoop
# echo "hello idoall flume -> hadoop testing one" | nc localhost 5140
|
d)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
/08/10 12:20:39 info instrumentation.monitoredcountergroup: monitored counter group for type: channel, name: c1: successfully registered new mbean.
/08/10 12:20:39 info instrumentation.monitoredcountergroup: component type: channel, name: c1 started
/08/10 12:20:39 info node.application: starting sink k1
/08/10 12:20:39 info node.application: starting source r1
/08/10 12:20:39 info instrumentation.monitoredcountergroup: monitored counter group for type: sink, name: k1: successfully registered new mbean.
/08/10 12:20:39 info instrumentation.monitoredcountergroup: component type: sink, name: k1 started
/08/10 12:20:39 info source.syslogtcpsource: syslog tcp source starting...
/08/10 12:21:46 warn source.syslogutils: event created from invalid syslog data.
/08/10 12:21:49 info hdfs.hdfssequencefile: writeformat = writable, userawlocalfilesystem = false
/08/10 12:21:49 info hdfs.bucketwriter: creating hdfs://m1:9000/user/flume/syslogtcp//syslog.1407644509504.tmp
/08/10 12:22:20 info hdfs.bucketwriter: closing hdfs://m1:9000/user/flume/syslogtcp//syslog.1407644509504.tmp
/08/10 12:22:20 info hdfs.bucketwriter: close tries incremented
/08/10 12:22:20 info hdfs.bucketwriter: renaming hdfs://m1:9000/user/flume/syslogtcp/syslog.1407644509504.tmp to hdfs://m1:9000/user/flume/syslogtcp/syslog.1407644509504
/08/10 12:22:20 info hdfs.hdfseventsink: writer callback called.
|
e)在m1上再打开一个窗口,去hadoop上检查文件是否生成 。
1
2
3
4
5
|
root@m1:
/home/hadoop
# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp
found 1 items
-rw-r--r-- 3 root supergroup 155 2014-08-10 12:22
/user/flume/syslogtcp/syslog
.1407644509504
root@m1:
/home/hadoop
# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/syslog.1407644509504
seq
!org.apache.hadoop.io.longwritable"org.apache.hadoop.io.byteswritable^;>gv$hello idoall flume -> hadoop testing one
|
7)案例7:file roll sink a)创建agent配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= syslogtcp
a1.sources.r1.port = 5555
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1.
type
= file_roll
a1.sinks.k1.sink.directory =
/home/hadoop/flume-1
.5.0-bin
/logs
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
b)启动flume agent a1 。
1
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -dflume.root.logger=info,console
|
c)测试产生log 。
1
2
|
root@m1:
/home/hadoop
# echo "hello idoall.org syslog" | nc localhost 5555
root@m1:
/home/hadoop
# echo "hello idoall.org syslog 2" | nc localhost 5555
|
d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件 。
1
2
3
4
5
6
7
8
9
10
|
root@m1:/home/hadoop# ll /home/hadoop/flume-1.5.0-bin/logs
总用量 272
drwxr-xr-x 3 root root 4096 aug 10 12:50 ./
drwxr-xr-x 9 root root 4096 aug 10 10:59 ../
-rw-r--r-- 1 root root 50 aug 10 12:49 1407646164782-1
-rw-r--r-- 1 root root 0 aug 10 12:49 1407646164782-2
-rw-r--r-- 1 root root 0 aug 10 12:50 1407646164782-3
root@m1:/home/hadoop# cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2
hello idoall.org syslog
hello idoall.org syslog 2
|
8)案例8:replicating channel selector flume支持fan out流从一个源到多个通道。有两种模式的fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。fan out流需要指定源和fan out通道的规则。 这次我们需要用到m1,m2两台机器 a)在m1创建replicating_channel_selector配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# describe/configure the source
a1.sources.r1.
type
= syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector.
type
= replicating
# describe the sink
a1.sinks.k1.
type
= avro
a1.sinks.k1.channel = c1
a1.sinks.k1.
hostname
= m1
a1.sinks.k1.port = 5555
a1.sinks.k2.
type
= avro
a1.sinks.k2.channel = c2
a1.sinks.k2.
hostname
= m2
a1.sinks.k2.port = 5555
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
a1.channels.c2.
type
= memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactioncapacity = 100
|
b)在m1创建replicating_channel_selector_avro配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# describe the sink
a1.sinks.k1.
type
= logger
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
c)在m1上将2个配置文件复制到m2上一份 。
1
2
|
root@m1:
/home/hadoop/flume-1
.5.0-bin
# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector.conf
root@m1:
/home/hadoop/flume-1
.5.0-bin
# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector_avro.conf<br>
|
d)打开4个窗口,在m1和m2上同时启动两个flume agent 。
1
2
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector_avro.conf -n a1 -dflume.root.logger=info,console
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_channel_selector.conf -n a1 -dflume.root.logger=info,console
|
e)然后在m1或m2的任意一台机器上,测试产生syslog 。
1
|
root@m1:
/home/hadoop
# echo "hello idoall.org syslog" | nc localhost 5140
|
f)在m1和m2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:
1
2
3
4
5
6
7
8
|
/08/10 14:08:18 info ipc.nettyserver: connection to /192.168.1.51:46844 disconnected.
/08/10 14:08:52 info ipc.nettyserver: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] open
/08/10 14:08:52 info ipc.nettyserver: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] bound: /192.168.1.50:5555
/08/10 14:08:52 info ipc.nettyserver: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] connected: /192.168.1.50:35873
/08/10 14:08:59 info ipc.nettyserver: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] open
/08/10 14:08:59 info ipc.nettyserver: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] bound: /192.168.1.50:5555
/08/10 14:08:59 info ipc.nettyserver: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] connected: /192.168.1.51:46858
/08/10 14:09:20 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 68 65 6c 6c 6f 20 69 64 6f 61 6c 6c 2e 6f 72 67 hello idoall.org }
|
9)案例9:multiplexing channel selector a)在m1创建multiplexing_channel_selector配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# describe/configure the source
a1.sources.r1.
type
= org.apache.flume.
source
.http.httpsource
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector.
type
= multiplexing
a1.sources.r1.selector.header =
type
#映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。
a1.sources.r1.selector.mapping.baidu = c1
a1.sources.r1.selector.mapping.ali = c2
a1.sources.r1.selector.default = c1
# describe the sink
a1.sinks.k1.
type
= avro
a1.sinks.k1.channel = c1
a1.sinks.k1.
hostname
= m1
a1.sinks.k1.port = 5555
a1.sinks.k2.
type
= avro
a1.sinks.k2.channel = c2
a1.sinks.k2.
hostname
= m2
a1.sinks.k2.port = 5555
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
a1.channels.c2.
type
= memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactioncapacity = 100
|
b)在m1创建multiplexing_channel_selector_avro配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# describe the sink
a1.sinks.k1.
type
= logger
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
c)将2个配置文件复制到m2上一份 。
1
2
|
root@m1:
/home/hadoop/flume-1
.5.0-bin
# scp -r /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector.conf
root@m1:
/home/hadoop/flume-1
.5.0-bin
# scp -r /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector_avro.conf
|
d)打开4个窗口,在m1和m2上同时启动两个flume agent 。
1
2
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector_avro.conf -n a1 -dflume.root.logger=info,console
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/multiplexing_channel_selector.conf -n a1 -dflume.root.logger=info,console
|
e)然后在m1或m2的任意一台机器上,测试产生syslog 。
1
|
root@m1:
/home/hadoop
# curl -x post -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_test1"}]' http://localhost:5140 && curl -x post -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_test2"}]' http://localhost:5140 && curl -x post -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_test3"}]' http://localhost:5140
|
f)在m1的sink窗口,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
14/08/10 14:32:21 info node.application: starting sink k1
14/08/10 14:32:21 info node.application: starting source r1
14/08/10 14:32:21 info source.avrosource: starting avro source r1: { bindaddress: 0.0.0.0, port: 5555 }...
14/08/10 14:32:21 info instrumentation.monitoredcountergroup: monitored counter group for type: source, name: r1: successfully registered new mbean.
14/08/10 14:32:21 info instrumentation.monitoredcountergroup: component type: source, name: r1 started
14/08/10 14:32:21 info source.avrosource: avro source r1 started.
14/08/10 14:32:36 info ipc.nettyserver: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] open
14/08/10 14:32:36 info ipc.nettyserver: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] bound: /192.168.1.50:5555
14/08/10 14:32:36 info ipc.nettyserver: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] connected: /192.168.1.50:35916
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] open
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] bound: /192.168.1.50:5555
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] connected: /192.168.1.51:46945
14/08/10 14:34:11 info sink.loggersink: event: { headers:{type=baidu} body: 69 64 6f 61 6c 6c 5f 54 45 53 54 31 idoall_test1 }
14/08/10 14:34:57 info sink.loggersink: event: { headers:{type=qq} body: 69 64 6f 61 6c 6c 5f 54 45 53 54 33 idoall_test3 }
|
g)在m2的sink窗口,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
14/08/10 14:32:27 info node.application: starting sink k1
14/08/10 14:32:27 info node.application: starting source r1
14/08/10 14:32:27 info source.avrosource: starting avro source r1: { bindaddress: 0.0.0.0, port: 5555 }...
14/08/10 14:32:27 info instrumentation.monitoredcountergroup: monitored counter group for type: source, name: r1: successfully registered new mbean.
14/08/10 14:32:27 info instrumentation.monitoredcountergroup: component type: source, name: r1 started
14/08/10 14:32:27 info source.avrosource: avro source r1 started.
14/08/10 14:32:36 info ipc.nettyserver: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] open
14/08/10 14:32:36 info ipc.nettyserver: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 14:32:36 info ipc.nettyserver: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] connected: /192.168.1.50:38104
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] open
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 14:32:44 info ipc.nettyserver: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] connected: /192.168.1.51:48599
14/08/10 14:34:33 info sink.loggersink: event: { headers:{type=ali} body: 69 64 6f 61 6c 6c 5f 54 45 53 54 32 idoall_test2 }
|
可以看到,根据header中不同的条件分布到不同的channel上 10)案例10:flume sink processors failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。 a)在m1创建flume_sink_processors配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
#这个是配置failover的关键,需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
#处理的类型是failover
a1.sinkgroups.g1.processor.
type
= failover
#优先级,数字越大优先级越高,每个sink的优先级必须不相同
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
#设置为10秒,当然可以根据你的实际状况更改成更快或者很慢
a1.sinkgroups.g1.processor.maxpenalty = 10000
# describe/configure the source
a1.sources.r1.
type
= syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector.
type
= replicating
# describe the sink
a1.sinks.k1.
type
= avro
a1.sinks.k1.channel = c1
a1.sinks.k1.
hostname
= m1
a1.sinks.k1.port = 5555
a1.sinks.k2.
type
= avro
a1.sinks.k2.channel = c2
a1.sinks.k2.
hostname
= m2
a1.sinks.k2.port = 5555
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
a1.channels.c2.
type
= memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactioncapacity = 100
|
b)在m1创建flume_sink_processors_avro配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# describe the sink
a1.sinks.k1.
type
= logger
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
c)将2个配置文件复制到m2上一份 。
1
2
|
root@m1:
/home/hadoop/flume-1
.5.0-bin
# scp -r /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors.conf
root@m1:
/home/hadoop/flume-1
.5.0-bin
# scp -r /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf
|
d)打开4个窗口,在m1和m2上同时启动两个flume agent 。
1
2
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf -n a1 -dflume.root.logger=info,console
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors.conf -n a1 -dflume.root.logger=info,console
|
e)然后在m1或m2的任意一台机器上,测试产生log 。
1
|
root@m1:
/home/hadoop
# echo "idoall.org test1 failover" | nc localhost 5140
|
f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:
1
2
3
4
5
|
14/08/10 15:02:46 info ipc.nettyserver: connection to /192.168.1.51:48692 disconnected.
14/08/10 15:03:12 info ipc.nettyserver: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] open
14/08/10 15:03:12 info ipc.nettyserver: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 15:03:12 info ipc.nettyserver: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] connected: /192.168.1.51:48704
14/08/10 15:03:26 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 31 idoall.org test1 }
|
g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据:
1
|
root@m1:
/home/hadoop
# echo "idoall.org test2 failover" | nc localhost 5140
|
h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据:
1
2
3
4
5
6
|
14/08/10 15:02:46 info ipc.nettyserver: connection to /192.168.1.51:47036 disconnected.
14/08/10 15:03:12 info ipc.nettyserver: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] open
14/08/10 15:03:12 info ipc.nettyserver: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] bound: /192.168.1.50:5555
14/08/10 15:03:12 info ipc.nettyserver: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] connected: /192.168.1.51:47048
14/08/10 15:07:56 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 31 idoall.org test1 }
14/08/10 15:07:56 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 32 idoall.org test2 }
|
i)我们再在m2的sink窗口中,启动sink:
1
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/flume_sink_processors_avro.conf -n a1 -dflume.root.logger=info,console
|
j)输入两批测试数据:
1
|
root@m1:
/home/hadoop
# echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140
|
k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
14/08/10 15:09:47 info node.application: starting sink k1
14/08/10 15:09:47 info node.application: starting source r1
14/08/10 15:09:47 info source.avrosource: starting avro source r1: { bindaddress: 0.0.0.0, port: 5555 }...
14/08/10 15:09:47 info instrumentation.monitoredcountergroup: monitored counter group for type: source, name: r1: successfully registered new mbean.
14/08/10 15:09:47 info instrumentation.monitoredcountergroup: component type: source, name: r1 started
14/08/10 15:09:47 info source.avrosource: avro source r1 started.
14/08/10 15:09:54 info ipc.nettyserver: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] open
14/08/10 15:09:54 info ipc.nettyserver: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 15:09:54 info ipc.nettyserver: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] connected: /192.168.1.51:48741
14/08/10 15:09:57 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 32 idoall.org test2 }
14/08/10 15:10:43 info ipc.nettyserver: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] open
14/08/10 15:10:43 info ipc.nettyserver: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] bound: /192.168.1.51:5555
14/08/10 15:10:43 info ipc.nettyserver: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] connected: /192.168.1.50:38166
14/08/10 15:10:43 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 33 idoall.org test3 }
14/08/10 15:10:43 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 34 idoall.org test4 }
|
11)案例11:load balancing sink processor load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。 a)在m1创建load_balancing_sink_processors配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1
#这个是配置load balancing的关键,需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.
type
= load_balance
a1.sinkgroups.g1.processor.backoff =
true
a1.sinkgroups.g1.processor.selector = round_robin
# describe/configure the source
a1.sources.r1.
type
= syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1.
type
= avro
a1.sinks.k1.channel = c1
a1.sinks.k1.
hostname
= m1
a1.sinks.k1.port = 5555
a1.sinks.k2.
type
= avro
a1.sinks.k2.channel = c1
a1.sinks.k2.
hostname
= m2
a1.sinks.k2.port = 5555
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
|
b)在m1创建load_balancing_sink_processors_avro配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# describe the sink
a1.sinks.k1.
type
= logger
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
c)将2个配置文件复制到m2上一份 。
1
2
|
root@m1:
/home/hadoop/flume-1
.5.0-bin
# scp -r /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors.conf
root@m1:
/home/hadoop/flume-1
.5.0-bin
# scp -r /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors_avro.conf
|
d)打开4个窗口,在m1和m2上同时启动两个flume agent 。
1
2
|
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors_avro.conf -n a1 -dflume.root.logger=info,console
root@m1:
/home/hadoop
# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/load_balancing_sink_processors.conf -n a1 -dflume.root.logger=info,console
|
e)然后在m1或m2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上 。
1
2
3
4
|
root@m1:
/home/hadoop
# echo "idoall.org test1" | nc localhost 5140
root@m1:
/home/hadoop
# echo "idoall.org test2" | nc localhost 5140
root@m1:
/home/hadoop
# echo "idoall.org test3" | nc localhost 5140
root@m1:
/home/hadoop
# echo "idoall.org test4" | nc localhost 5140
|
f)在m1的sink窗口,可以看到以下信息:
1
2
|
14/08/10 15:35:29 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 32 idoall.org test2 }
14/08/10 15:35:33 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 34 idoall.org test4 }
|
g)在m2的sink窗口,可以看到以下信息:
1
2
|
14/08/10 15:35:27 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 31 idoall.org test1 }
14/08/10 15:35:29 info sink.loggersink: event: { headers:{severity=0, flume.syslog.status=invalid, facility=0} body: 69 64 6f 61 6c 6c 2e 6f 72 67 20 74 65 73 74 33 idoall.org test3 }
|
说明轮询模式起到了作用。 12)案例12:hbase sink a)在测试之前,请先参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动 b)然后将以下文件复制到flume中:
1
2
3
4
5
6
7
8
|
cp
/home/hadoop/hbase-0
.96.2-hadoop2
/lib/protobuf-java-2
.5.0.jar
/home/hadoop/flume-1
.5.0-bin
/lib
cp
/home/hadoop/hbase-0
.96.2-hadoop2
/lib/hbase-client-0
.96.2-hadoop2.jar
/home/hadoop/flume-1
.5.0-bin
/lib
cp
/home/hadoop/hbase-0
.96.2-hadoop2
/lib/hbase-common-0
.96.2-hadoop2.jar
/home/hadoop/flume-1
.5.0-bin
/lib
cp
/home/hadoop/hbase-0
.96.2-hadoop2
/lib/hbase-protocol-0
.96.2-hadoop2.jar
/home/hadoop/flume-1
.5.0-bin
/lib
cp
/home/hadoop/hbase-0
.96.2-hadoop2
/lib/hbase-server-0
.96.2-hadoop2.jar
/home/hadoop/flume-1
.5.0-bin
/lib
cp
/home/hadoop/hbase-0
.96.2-hadoop2
/lib/hbase-hadoop2-compat-0
.96.2-hadoop2.jar
/home/hadoop/flume-1
.5.0-bin
/lib
cp
/home/hadoop/hbase-0
.96.2-hadoop2
/lib/hbase-hadoop-compat-0
.96.2-hadoop2.jar
/home/hadoop/flume-1
.5.0-bin
/lib
@@@
cp
/home/hadoop/hbase-0
.96.2-hadoop2
/lib/htrace-core-2
.04.jar
/home/hadoop/flume-1
.5.0-bin
/lib
|
c)确保test_idoall_org表在hbase中已经存在,test_idoall_org表的格式以及字段请参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》中关于hbase部分的建表代码。 d)在m1创建hbase_simple配置文件 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
root@m1:
/home/hadoop
# vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# describe/configure the source
a1.sources.r1.
type
= syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# describe the sink
a1.sinks.k1.
type
= logger
a1.sinks.k1.
type
= hbase
a1.sinks.k1.table = test_idoall_org
a1.sinks.k1.columnfamily = name
a1.sinks.k1.column = idoall
a1.sinks.k1.serializer = org.apache.flume.sink.hbase.regexhbaseeventserializer
a1.sinks.k1.channel = memorychannel
# use a channel which buffers events in memory
a1.channels.c1.
type
= memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactioncapacity = 100
# bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
|
e)启动flume agent 。
1
|
/home/hadoop/flume-1
.5.0-bin
/bin/flume-ng
agent -c . -f
/home/hadoop/flume-1
.5.0-bin
/conf/hbase_simple
.conf -n a1 -dflume.root.logger=info,console
|
f)测试产生syslog 。
1
|
root@m1:
/home/hadoop
# echo "hello idoall.org from flume" | nc localhost 5140
|
g)这时登录到hbase中,可以发现新数据已经插入 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
root@m1:
/home/hadoop
# /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell
2014-08-10 16:09:48,984 info [main] configuration.deprecation: hadoop.native.lib is deprecated. instead, use io.native.lib.available
hbase shell; enter
'help<return>'
for
list of supported commands.
type
"exit<return>"
to leave the hbase shell
version 0.96.2-hadoop2, r1581096, mon mar 24 16:03:18 pdt 2014
hbase(main):001:0> list
table
slf4j: class path contains multiple slf4j bindings.
slf4j: found binding
in
[jar:
file
:
/home/hadoop/hbase-0
.96.2-hadoop2
/lib/slf4j-log4j12-1
.6.4.jar!
/org/slf4j/impl/staticloggerbinder
.class]
slf4j: found binding
in
[jar:
file
:
/home/hadoop/hadoop-2
.2.0
/share/hadoop/common/lib/slf4j-log4j12-1
.7.5.jar!
/org/slf4j/impl/staticloggerbinder
.class]
slf4j: see http:
//www
.slf4j.org
/codes
.html
#multiple_bindings for an explanation.
hbase2hive_idoall
hive2hbase_idoall
test_idoall_org
3 row(s)
in
2.6880 seconds
=> [
"hbase2hive_idoall"
,
"hive2hbase_idoall"
,
"test_idoall_org"
]
hbase(main):002:0> scan
"test_idoall_org"
row column+cell
10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue
1 row(s)
in
0.0550 seconds
hbase(main):003:0> scan
"test_idoall_org"
row column+cell
10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue
1407658495588-xbqcozrkk8-0 column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume
2 row(s)
in
0.0200 seconds
hbase(main):004:0> quit
|
经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧。 这篇文章做为一个笔记,希望能够对刚入门的同学起到帮助作用.
最后此篇关于Flume环境部署和配置详解及案例大全的文章就讲到这里了,如果你想了解更多关于Flume环境部署和配置详解及案例大全的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我在文档中找不到答案,所以我在这里问。 在 Grails 中,当您创建应用程序时,您会默认获得生产、开发等环境。 如果您想为生产构建 WAR,您可以运行以下任一命令: grails war 或者 gr
我们组织的网站正在迁移到 Sitecore CMS,但我们正在努力以某种方式为开发人员 (4)、设计师 (4)、QA 人员 (3)、作者 (10-15) 和批准者 (4-10) 设置环境在他们可以独立
如何在WinCVS中设置CVSROOT环境变量? 最佳答案 简单的回答是:您不需要。 CVSROOT 环境变量被高估了。 CVS(NT) 只会在确定存储库连接字符串的所有其他方法都已用尽时才使用它。人
我最近完成了“learnyouahaskell”一书,现在我想通过构建 yesod 应用程序来应用我所学到的知识。 但是我不确定如何开始。 关于如何设置 yesod 项目似乎有两个选项。一是Stack
在这一章中,我们将讨论创建 C# 编程所需的工具。我们已经提到 C# 是 .Net 框架的一部分,且用于编写 .Net 应用程序。因此,在讨论运行 C# 程序的可用工具之前,让我们先了解一下 C#
运行Ruby 代码需要配置 Ruby 编程语言的环境。本章我们会学习到如何在各个平台上配置安装 Ruby 环境。 各个平台上安装 Ruby 环境 Linux/Unix 上的 Ruby 安装
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引起辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the he
我有一个这样的计算(请注意,这只是非常简化的、缩减版的、最小的可重现示例!): computation <- function() # simplified version! { # a lo
我使用环境作为哈希表。键是来自常规文本文档的单词,值是单个整数(某个其他结构的索引)。 当我加载数百万个元素时,更新和查找都变慢了。下面是一些代码来显示行为。 看起来从一开始的行为在 O(n) 中比在
我正在构建一个 R 包并使用 data-raw和 data存储预定义的库 RxODE楷模。这非常有效。 然而,由此产生的.rda文件每代都在变化。某些模型包含 R 环境,并且序列化似乎包含“创建时间”
(不确定问题是否属于这里,所以道歉是为了) 我很喜欢 Sublime Text ,我经常发现 Xcode 缺少一些文本/数据处理的东西。我可能有不止一个问题—— 'Command +/' 注释代码但没
我正在使用 SF2,并且创建了一些有助于项目调试的路由: widget_debug_page: path: /debug/widget/{widgetName} defau
我创建了一个名为 MyDjangoEnv 的 conda 环境。当我尝试使用 source activate MyDjangoEnv 激活它时,出现错误: No such file or direct
有没有办法区分从本地机器运行的包和从 Cordova 应用商店安装的包? 例如,我想像这样设置一个名为“evn”的 JavaScript 变量: if(cordovaLocal){ env = 'de
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 1
我的任务是使用 java 和 mysql 开发一个交互式网站:使用 servlet 检索和处理数据,applet 对数据客户端进行特殊处理,并处理客户端对不同数据 View 的请求。 对于使用 jav
这按预期工作: [dgorur@ted ~]$ env -i env [dgorur@ted ~]$ 这样做: [dgorur@ted ~]$ env -i which date which: no
我想进行非常快速的搜索,看来使用哈希(通过环境)是最好的方法。现在,我得到了一个在环境中运行的示例,但它没有返回我需要的内容。 这是一个例子: a system.time(benchEnv(), g
我想开始开发 OpenACC 程序,我有几个问题要问:是否可以在 AMD gpu 上执行 OpenACC 代码? 如果是这样,我正在寻找适用于 Windows 环境的编译器。我花了将近一个小时什么也没
这可能看起来很奇怪,但是有没有办法制作机器(linux/unix 风格 - 最好是 RHEL)。我需要控制机器的速度以确保代码在非常慢的系统上工作并确定正确的断点(在时间方面)。 我能做到的一种方法是
我是一名优秀的程序员,十分优秀!