gpt4 book ai didi

Python实现双轴组合图表柱状图和折线图的具体流程

转载 作者:qq735679552 更新时间:2022-09-27 22:32:09 34 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章Python实现双轴组合图表柱状图和折线图的具体流程由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

python绘制双轴组合的关键在plt库的twinx()函数,具体流程:

1.先建立坐标系,然后绘制主坐标轴上的图表; 。

2.再调用plt.twinx()方法; 。

3.最后绘制次坐标轴图表.

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import cx_oracle
import xlrd
import xlwt
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import funcformatter
 
plt.rcparams[ 'font.sans-serif' ] = [ 'simhei' ]
plt.rcparams[ 'axes.unicode_minus' ] = false
#设置坐标轴数值以百分比(%)显示函数
def to_percent(temp, position):
   return '%1.0f' % ( 1 * temp) + '%'
#字体设置
font2 = { 'family' : 'times new roman' ,
'weight' : 'normal' ,
'size'   : 25 ,
}
 
conn = cx_oracle.connect( '用户名/密码@ip:端口/数据库' )
c = conn.cursor()
#sql查询语句,多行用()括起来
sql_detail = ( "select substr(date1,6,10)date1,round(avg(r_qty))r_qty,round(avg(e_qty))e_qty," "round(avg(r_qty)/avg(e_qty),2)*100 userate,round(avg(uptime),2)*100 uptime from 表tp "
"tp where 条件  "
"group by date1 order by date1 "
                              
x = c.execute(sql_detail)
#获取sql查询数据                        
data = x.fetchall()
#print(data)
 
#新建excel保存数据
xl = xlwt.workbook()
ws = xl.add_sheet( "robot 30 days move " )
#ws.write_merge(0,1,0,4,"robot_30_days_move")
for i,item in enumerate (data):
     for j,val in enumerate (item):
         ws.write(i,j,val)
xl.save( "e:\\robot_30_days_move.xls" )
 
#读取excel数据
data1 = xlrd.open_workbook( "e:\\robot_30_days_move.xls" )
sheet1 = data1.sheet_by_index( 0 )
 
date1 = sheet1.col_values( 0 )
r_qty = sheet1.col_values( 1 )
e_qty = sheet1.col_values( 2 )
userate = sheet1.col_values( 3 )
uptime = sheet1.col_values( 4 )
 
#空值处理
for a in r_qty:
     if a = = '':
         a = 0
for a in e_qty:
     if a = = '':
         a = 0
for a in userate:
     if a = = '':
         a = 0
for a in uptime:
     if a = = '':
         a = 0
#将list元素str转int类型
r_qty = list ( map ( int , r_qty))
e_qty = list ( map ( int , e_qty))
userate = list ( map ( int , userate))
uptime = list ( map ( int , uptime))
#添加平均值mean求平均
r_qty.append( int (np.mean(r_qty)))
e_qty.append( int (np.mean(e_qty)))
userate.append( int (np.mean(userate)))
uptime.append( int (np.mean(uptime)))
date1.append( 'avg' )
 
#x轴坐标
x = np.arange( len (date1))
bar_width = 0.35
 
plt.figure( 1 ,figsize = ( 19 , 10 ))
#绘制主坐标轴-柱状图
plt.bar(np.arange( len (date1)),r_qty,label = 'rbt_move' ,align = 'center' ,alpha = 0.8 ,color = 'blue' ,width = bar_width)
plt.bar(np.arange( len (date1)) + bar_width,e_qty,label = 'eqp_move' ,align = 'center' ,alpha = 0.8 ,color = 'orange' ,width = bar_width)
 
#设置主坐标轴参数
plt.xlabel('')
plt.ylabel( 'move' ,fontsize = 18 )
plt.legend(loc = 1 , bbox_to_anchor = ( 0 , 0.97 ),borderaxespad = 0. )
#plt.legend(loc='upper left')
for x,y in enumerate (r_qty):
     plt.text(x,y + 100 , '%s' % y,ha = 'center' ,va = 'bottom' )
for x,y in enumerate (e_qty):
     plt.text(x + bar_width,y + 100 , '%s' % y,ha = 'left' ,va = 'top' )
plt.ylim([ 0 , 8000 ])
 
#调用plt.twinx()后可绘制次坐标轴
plt.twinx()
 
#次坐标轴参考线
target1 = [ 90 ] * len (date1)
target2 = [ 80 ] * len (date1)
 
x = list ( range ( len (date1)))
plt.xticks(x,date1,rotation = 45 )
 
#绘制次坐标轴-折线图
plt.plot(np.arange( len (date1)),userate,label = 'use_rate' ,color = 'green' ,linewidth = 1 ,linestyle = 'solid' ,marker = 'o' ,markersize = 3 )
plt.plot(np.arange( len (date1)),uptime,label = 'uptime' ,color = 'red' ,linewidth = 1 ,linestyle = '--' ,marker = 'o' ,markersize = 3 )
 
plt.plot(np.arange( len (date1)),target1,label = '90%target' ,color = 'black' ,linewidth = 1 ,linestyle = 'dashdot' )
plt.plot(np.arange( len (date1)),target2,label = '80%target' ,color = 'black' ,linewidth = 1 ,linestyle = 'dashdot' )
 
#次坐标轴刻度百分比显示
plt.gca().yaxis.set_major_formatter(funcformatter(to_percent))
 
plt.xlabel('')
plt.ylabel( 'rate' ,fontsize = 18 )
#图列
plt.legend(loc = 2 , bbox_to_anchor = ( 1.01 , 0.97 ),borderaxespad = 0. )
plt.ylim([ 0 , 100 ])
for x,y in enumerate (userate):
     plt.text(x,y - 1 , '%s' % y,ha = 'right' ,va = 'bottom' ,fontsize = 14 )
for x,y in enumerate (uptime):
     plt.text(x,y + 1 , '%s' % y,ha = 'left' ,va = 'top' ,fontsize = 14 )
 
plt.title( "robot 30 days move" )
 
#图表table显示plt.table()
listdata = [r_qty] + [e_qty] + [userate] + [uptime] #数据
table_row = [ 'rbt_move' , 'eqp_move' , 'use_rate(%)' , 'uptime(%)' ] #行标签
table_col = date1 #列标签
print (listdata)
print (table_row)
print (table_col)
 
the_table = plt.table(celltext = listdata,cellloc = 'center' ,rowlabels = table_row,collabels = table_col,rowloc = 'center' ,colloc = 'center' )
#table参数设置-字体大小太小,自己设置
the_table.auto_set_font_size(false)
the_table.set_fontsize( 12 )
#table参数设置-改变表内字体显示比例,没有会溢出到表格线外面
the_table.scale( 1 , 3 )
#plt.show()
 
plt.savefig(r "e:\\robot_30_days_move.png" ,bbox_inches = 'tight' )
#关闭sql连接
c.close()                                                     
conn.close()

结果显示:

Python实现双轴组合图表柱状图和折线图的具体流程

到此这篇关于python实现双轴组合图表柱状图和折线图的具体流程的文章就介绍到这了,更多相关python柱状图和折线图内容请搜索我以前的文章或继续浏览下面的相关文章希望大家以后多多支持我! 。

原文链接:https://www.cnblogs.com/bellin124/p/14610744.html 。

最后此篇关于Python实现双轴组合图表柱状图和折线图的具体流程的文章就讲到这里了,如果你想了解更多关于Python实现双轴组合图表柱状图和折线图的具体流程的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com