gpt4 book ai didi

常见的排序算法,一篇就够了

转载 作者:qq735679552 更新时间:2022-09-29 22:32:09 26 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章常见的排序算法,一篇就够了由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

排序算法介绍 。

排序也称排序算法 (Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程.

排序的分类:

1) 内部排序

指将需要处理的所有数据都加载到内部存储器中进行排序.

2) 外部排序法:

数据量过大,无法全部加载到内存中,需要借助外部存储进行排序.

常见的排序的排序算法分类如图:

常见的排序算法,一篇就够了

冒泡排序 。

冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒.

原始数组:3, 9, -1, 10, 20 。

第一趟排序 。

(1) 3, 9, -1, 10, 20 // 如果相邻的元素逆序就交换 。

(2) 3, -1, 9, 10, 20 。

(3) 3, -1, 9, 10, 20 。

(4) 3, -1, 9, 10, 20 。

第二趟排序 。

(1) -1, 3, 9, 10, 20 //交换 。

(2) -1, 3, 9, 10, 20 。

(3) -1, 3, 9, 10, 20 。

第三趟排序 。

(1) -1, 3, 9, 10, 20 。

(2) -1, 3, 9, 10, 20 。

第四趟排序 。

(1) -1, 3, 9, 10, 20 。

小结冒泡排序规则 。

(1) 一共进行 数组的大小-1 次 大的循环 。

(2)每一趟排序的次数在逐渐的减少 。

(3) 如果我们发现在某趟排序中,没有发生一次交换, 可以提前结束冒泡排序。这个就是优化 。

因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下 来没有进行过交换,就说明序列有序,因此要在排序过程中设置 一个标志flag判断元素是否进行过交换。从而减少不必要的比较。(这 。

里说的优化,可以在冒泡排序写好后,在进行) 。

代码实现 。

public static void bubbleSort(int[] arr){        int temp = 0;        //标识变量,表示是否进行过交换        boolean flag = false;        //时间复杂度O(n^2)        for (int i = 0; i @lt; arr.length - 1; i++) { //一共要排序几次            for (int j = 0; j @lt; arr.length - 1 - i; j++) {//每次排序需要比较的次数                if (arr[j] @gt; arr[j + 1]){                    flag = true;                    temp = arr[j + 1];                    arr[j + 1] = arr[j];                    arr[j] = temp;                }            }            if (flag){//出现过交换,重置flag                flag = false;            }else//在上一趟排序中,一次交换也没有发生过                break;        }    }

选择排序 。

选择式排序也属于内部排序法,是从欲排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的.

选择排序思想 。

选择排序(select sorting)也是一种简单的排序方法。它的基本思想是:第一次从arr[0]~arr[n-1]中选取最小值,与arr[0]交换,第二次从arr[1]~arr[n-1]中选取最小值,与arr[1]交换,第三次arr[2]~arr[n-1]中选取最小值,与arr[2]交换,…,第i次从arr[i-1]~arr[n-1]中选取最小值,与arr[i-1]交换,…, 第n-1次从arr[n-2]~arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列 。

原始的数组 : 101, 34, 119, 1 。

第一轮排序 : 1, 34, 119, 101 。

第二轮排序 : 1, 34, 119, 101 。

第三轮排序 : 1, 34, 101, 119 。

小结选择排序的规则 。

1. 选择排序一共有 数组大小 - 1 轮排序 。

2. 每1轮排序,又是一个循环, 循环的规则(代码) 。

2.1先假定当前这个数是最小数 。

2.2 然后和后面的每个数进行比较,如果发现有比当前数更小的数,就重新确定最小数,并得到下标 。

2.3 当遍历到数组的最后时,就得到本轮最小数和下标 2.4 交换 [代码中再继续说 ] 。

代码实现 。

public static void selectSort(int[]arr){        for (int i = 0; i @lt; arr.length - 1; i++) {            int minIndex = i;            int min = arr[i];            for (int j = i + 1; j @lt; arr.length; j++) {                if (min @gt; arr[j]){                    minIndex = j;                    min = arr[j];                }            }            //将最小值放在arr[i],即交换            if (minIndex != i){//如果最小值的下标改变了则交换                arr[minIndex] = arr[i];                arr[i] = min;            }        }    }

插入排序 。

插入式排序属于内部排序法,是对于欲排序的元素以插入的方式找寻该元素的适当位置,以达到排序的目的.

插入排序思想 。

插入排序(Insertion Sorting)的基本思想是:把n个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,把它的排序码依次与有序表元素的排序码进行比较,将它插入到有序表中的适当位置,使之成为新的有序表.

原始的数组 : (101), 34, 119, 1 。

橘色箭头表示待插入的元素下标 。

绿色箭头表示待插入元素 。

常见的排序算法,一篇就够了

第一次插入排序 。

常见的排序算法,一篇就够了

第二次插入排序 。

常见的排序算法,一篇就够了

第三次插入排序 。

常见的排序算法,一篇就够了

代码实现 。

public static void insertSort(int[] arr){        int insertIndex = 0;        int insertValue = 0;        for (int i = 1; i @lt; arr.length; i++) {            insertIndex = i - 1;            insertValue = arr[i];            while(insertIndex @gt;= 0 @amp;@amp; arr[insertIndex] @gt; insertValue){                arr[insertIndex + 1] = arr[insertIndex];                insertIndex--;            }            //优化是否需要赋值            if (insertIndex + 1 != i){                arr[insertIndex + 1] = insertValue;            }        }    }

分析简单插入排序存在的问题 。

我们看简单的插入排序可能存在的问题. 。

数组 arr = {2,3,4,5,6,1} 这时需要插入的数 1(最小), 这样的过程是:

{2,3,4,5,6,6} 。

{2,3,4,5,5,6} 。

{2,3,4,4,5,6} 。

{2,3,3,4,5,6} 。

{2,2,3,4,5,6} 。

{1,2,3,4,5,6} 。

结论: 当需要插入的数是较小的数时,后移的次数明显增多,对效率有影响. 。

希尔排序 。

希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序.

希尔排序基本思想 。

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止 。

常见的排序算法,一篇就够了

常见的排序算法,一篇就够了

为了方便大家理解 。

希尔排序时,对有序序列在插入时先采用交换法(冒泡法) 。

public static void shellSort(int[] arr){        int temp = 0;        int count = 0;        for (int gap = arr.length / 2; gap @gt; 0; gap /= 2) {            for (int i = gap; i @lt; arr.length; i++) {                for (int j = i - gap; j @gt;= 0; j -= gap) {                    if (arr[j] @gt; arr[j + gap]){//这里采用交换法                        temp = arr[j];                        arr[j] = arr[j + gap];                        arr[j + gap] = temp;                    }                }            }        }    }

希尔排序时,对有序序列在插入时采用移位法(真正的希尔排序)(插入法) 。

public static void shellSort(int[]arr){        int count = 0;        for (int gap = arr.length / 2; gap @gt; 0; gap /= 2) {            for (int i = gap; i @lt; arr.length; i++) {                int insertIndex = i - gap;                int insertValue = arr[insertIndex + gap];                while(insertIndex @gt;= 0 @amp;@amp; insertValue @lt; arr[insertIndex]){                    arr[insertIndex + gap] = arr[insertIndex];                    insertIndex -= gap;                }                if (insertIndex != (i - gap)){                    arr[insertIndex + gap] = insertValue;                }            }        }    }

快速排序 。

快速排序(Quicksort)是对冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列 。

常见的排序算法,一篇就够了

常见的排序算法,一篇就够了

代码实现 。

 public static void quickSort(int[] arr,int left,int right){        int r = right;        int l = left;        int temp = 0;        int pivot = arr[(right + left) / 2];        while(l @lt; r){            while(arr[l] @lt; pivot){                l++;            }            while(arr[r] @gt; pivot){                r--;            }            if(l == r)                break;            temp = arr[r];            arr[r] = arr[l];            arr[l] = temp;            if (arr[l] == pivot){                r--;            }            if (arr[r] == pivot){                l++;            }        }        if (l == r){            l += 1;            r -= 1;        }        //向左递归        if(left @lt; r){            quickSort(arr,left,r);        }        //向右递归        if(right @gt; l){            quickSort(arr,l,right);        }    }

归并排序 。

归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之).

常见的排序算法,一篇就够了

说明: 可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程.

再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤 。

常见的排序算法,一篇就够了

常见的排序算法,一篇就够了

代码实现 。

治 。

/**     *     * @param arr   排序的原始数组     * @param left  左边有序序列的初始索引     * @param mid   中间索引     * @param right 右边索引     * @param temp  中转数组     */    public static void merge(int[] arr,int left,int mid,int right,int[]temp){        //System.out.println("*****");        int i = left;        int j = mid + 1;        int t = 0;        /*        (一)        先把两边有序的数据按照规则填充到temp数组        指导左右两边的有序序列,有一边处理完毕        */        while(i @lt;= mid @amp;@amp; j @lt;= right){            temp[t++] = arr[i] @gt; arr[j] ? arr[j++] : arr[i++];        }        /*        (二)        把所有剩余数据的一边一次全部填充到temp         */        while(i @lt;= mid){            temp[t++] = arr[i++];        }        while (j @lt;= right){            temp[t++] = arr[j++];        }        /*        (三)        将temp数组的元素拷贝到arr         */        t = 0;        int tempLeft = left;        //System.out.println("tempLeft = " + tempLeft + "right = " + right);        while(tempLeft @lt;= right){            arr[tempLeft++] = temp[t++];        }    }

分(递归) 。

public static void mergeSort(int[] arr,int left,int right,int[] temp){        if(left @lt; right){            int mid = (left + right) / 2;            mergeSort(arr,left,mid,temp);            mergeSort(arr,mid + 1,right,temp);            merge(arr,left,mid,right,temp);        }    }

基数排序(桶排序) 。

1、基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用 。

2、基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法 。

3、基数排序(Radix Sort)是桶排序的扩展 。

4、基数排序是1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较.

基数排序的基本思想 。

将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列.

这样说明,比较难理解,下面我们看一个图文解释,理解基数排序的步骤 。

数组的初始状态 arr = {53, 3, 542, 748, 14, 214} 。

第1轮排序

(1) 将每个元素的个位数取出,然后看这个数应该放在哪个对应的桶(一个一维数组) 。

常见的排序算法,一篇就够了

(2) 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组) 。

数组的第1轮排序 arr = {542, 53, 3, 14, 214, 748} 。

第2轮排序

(1) 将每个元素的十位数取出,然后看这个数应该放在哪个对应的桶(一个一维数组) 。

常见的排序算法,一篇就够了

(2) 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组) 。

数组的第2轮排序 arr = {3, 14, 214, 542, 748, 53} 。

第3轮排序

(1) 将每个元素百位数取出,然后看这个数应该放在哪个对应的桶(一个一维数组) 。

常见的排序算法,一篇就够了

(2) 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组) 。

数组的第3轮排序 arr = {3, 14, 53, 214, 542, 748} 。

以上就是基数排序的实现过程 。

代码实现 。

代码说明 。

获取数组最大元素的位数 。

使用二维数组bucket[10][arr.length]模拟桶 。

使用bucketElementCounts[10]模拟每个桶的指针 。

 public static void redixSort(int[]arr){        //获取数组中最大元素的位数        int max = arr[0];        for (int i = 0; i @lt; arr.length; i++) {            if(max @lt; arr[i])                max = arr[i];        }        int maxLength = (max + "").length();        //定义一个二维数组模拟桶        int [][] bucket = new int[10][arr.length];        //为了记录每个桶中的元素个数定义一个一维数组        int [] bucketElementCounts = new int[10];        for (int i = 0, n = 1; i @lt; maxLength; i++,n *= 10) {            //入桶            for (int j = 0; j @lt; arr.length; j++) {                int digitOfElement = arr[j] / n %10;                bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];                bucketElementCounts[digitOfElement]++;            }            int index = 0;            //出桶            for (int j = 0; j @lt; bucketElementCounts.length; j++) {                if(bucketElementCounts[j] != 0){                    for (int k = 0; k @lt; bucketElementCounts[j]; k++) {                        arr[index++] = bucket[j][k];                    }                }                //取出元素后,需要将bucketElementCount中的元素清零                bucketElementCounts[j] = 0;            }            //System.out.println("第" + (i + 1) + "次排序后的数组" + Arrays.toString(arr));        }    }

排序算法的速度测试 。

下面我创建了一个长度分别为80000的随机数组进行测试 。

硬件:CPU8代i7 。

public static void main(String[] args) {        System.out.println("测试排序算法的时间");        int[] arr = new int[80000];        for (int i = 0; i @lt; arr.length; i++) {            arr[i] = (int)(Math.random() * 8000000);        }        Long startTime = System.currentTimeMillis();        redixSort(arr);        Long endTime = System.currentTimeMillis();        System.out.println(endTime - startTime + "ms");    }

分别测试 。

冒泡排序(优化后) 。

经过多次测试80000个数据冒泡排序大致时间10s左右 。

常见的排序算法,一篇就够了

选择排序 。

经过多次测试80000个数据选择排序大致时间1900ms-2200ms 。

常见的排序算法,一篇就够了

插入排序 。

经过多次测试80000个数据插入排序大致时间528ms-600ms 。

常见的排序算法,一篇就够了

希尔排序 。

经过多次测试80000个数据希尔排序大致时间17ms-22ms 。

常见的排序算法,一篇就够了

测试800000个数据 。

常见的排序算法,一篇就够了

测试8000000个数据 。

常见的排序算法,一篇就够了

快速排序 。

经过多次测试80000个数据快速排序大致时间15ms-22ms 。

常见的排序算法,一篇就够了

测试800000个数据 。

常见的排序算法,一篇就够了

测试8000000个数据 。

常见的排序算法,一篇就够了

基数排序 。

经过多次测试80000个数据基数排序大致时间18ms-33ms 。

常见的排序算法,一篇就够了

测试800000个数据 。

常见的排序算法,一篇就够了

测试8000000个数据 。

常见的排序算法,一篇就够了

分析 。

常见的排序算法,一篇就够了

  。

相关术语解释:

稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面; 。

不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面; 。

内排序:所有排序操作都在内存中完成; 。

外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行; 。

时间复杂度: 一个算法执行所耗费的时间.

空间复杂度:运行完一个程序所需内存的大小.

n: 数据规模 。

k: “桶”的个数 。

In-place: 不占用额外内存 。

Out-place: 占用额外内存 。

总结

本篇文章就到这里了,希望能够帮助到你,也希望你能够多多关注我的更多内容! 。

原文链接:https://blog.csdn.net/qq_45796208/article/details/110679337 。

最后此篇关于常见的排序算法,一篇就够了的文章就讲到这里了,如果你想了解更多关于常见的排序算法,一篇就够了的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com