- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章FP-growth算法发现频繁项集——构建FP树由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
FP代表频繁模式(Frequent Pattern),算法主要分为两个步骤:FP-tree构建、挖掘频繁项集.
FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据.
一颗FP树如下图所示:
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样.
FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示.
为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针.
现在有如下数据:
FP-growth算法需要对原始训练集扫描两遍以构建FP树.
第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序.
第一次扫描的后的结果 。
第二次扫描,构造FP树.
参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:
事务001,{z,x} 。
事务002,{z,x,y,t,s} 。
事务003,{z} 。
事务004,{x,s,r} 。
事务005,{z,x,y,t,r} 。
事务006,{z,x,y,t,s} 。
从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表.
代码如下:
def loadSimpDat(): simpDat = [['r', 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']] return simpDatdef createInitSet(dataSet): retDict = {} for trans in dataSet: fset = frozenset(trans) retDict.setdefault(fset, 0) retDict[fset] += 1 return retDictclass treeNode: def __init__(self, nameValue, numOccur, parentNode): self.name = nameValue self.count = numOccur self.nodeLink = None self.parent = parentNode self.children = {} def inc(self, numOccur): self.count += numOccur def disp(self, ind=1): print(' ' * ind, self.name, ' ', self.count) for child in self.children.values(): child.disp(ind + 1)def createTree(dataSet, minSup=1): headerTable = {} #此一次遍历数据集, 记录每个数据项的支持度 for trans in dataSet: for item in trans: headerTable[item] = headerTable.get(item, 0) + 1 #根据最小支持度过滤 lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys())) for k in lessThanMinsup: del(headerTable[k]) freqItemSet = set(headerTable.keys()) #如果所有数据都不满足最小支持度,返回None, None if len(freqItemSet) == 0: return None, None for k in headerTable: headerTable[k] = [headerTable[k], None] retTree = treeNode('φ', 1, None) #第二次遍历数据集,构建fp-tree for tranSet, count in dataSet.items(): #根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度 localD = {} for item in tranSet: if item in freqItemSet: localD[item] = headerTable[item][0] if len(localD) > 0: #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)] updateTree(orderedItems, retTree, headerTable, count) return retTree, headerTabledef updateTree(items, inTree, headerTable, count): if items[0] in inTree.children: # check if orderedItems[0] in retTree.children inTree.children[items[0]].inc(count) # incrament count else: # add items[0] to inTree.children inTree.children[items[0]] = treeNode(items[0], count, inTree) if headerTable[items[0]][1] == None: # update header table headerTable[items[0]][1] = inTree.children[items[0]] else: updateHeader(headerTable[items[0]][1], inTree.children[items[0]]) if len(items) > 1: # call updateTree() with remaining ordered items updateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode): # this version does not use recursion while (nodeToTest.nodeLink != None): # Do not use recursion to traverse a linked list! nodeToTest = nodeToTest.nodeLink nodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()dictDat = createInitSet(simpDat)myFPTree,myheader = createTree(dictDat, 3)myFPTree.disp()
上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度.
控制台信息:
值得注意的是,对项的关键字排序将会影响FP树的结构。下面两图是相同训练集生成的FP树,图1除了按照最小支持度排序外,未对项做任何处理;图2则将项按照关键字进行了降序排序。树的结构也将影响后续发现频繁项的结果.
图1 未对项的关键字排序 。
图2 对项的关键字降序排序 。
本篇文章就到这里了,下篇继续,介绍如何发现频繁项集。希望能给你带来帮助,也希望您能够多多关注我的更多内容! 。
原文链接:https://www.cnblogs.com/bigmonkey/p/7478698.html 。
最后此篇关于FP-growth算法发现频繁项集——构建FP树的文章就讲到这里了,如果你想了解更多关于FP-growth算法发现频繁项集——构建FP树的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
关于 B 树与 B+ 树,网上有一个比较经典的问题:为什么 MongoDb 使用 B 树,而 MySQL 索引使用 B+ 树? 但实际上 MongoDb 真的用的是 B 树吗?
如何将 R* Tree 实现为持久(基于磁盘)树?保存 R* 树索引或保存叶值的文件的体系结构是什么? 注意:此外,如何在这种持久性 R* 树中执行插入、更新和删除操作? 注意事项二:我已经实现了一个
目前,我正在努力用 Java 表示我用 SML 编写的 AST 树,这样我就可以随时用 Java 遍历它。 我想知道是否应该在 Java 中创建一个 Node 类,其中包含我想要表示的数据,以及一个数
我之前用过这个库http://www.cs.umd.edu/~mount/ANN/ .但是,它们不提供范围查询实现。我猜是否有一个 C++ 范围查询实现(圆形或矩形),用于查询二维数据。 谢谢。 最佳
在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择
书接上回,今天和大家一起动手来自己实现树。 相信通过前面的章节学习,大家已经明白树是什么了,今天我们主要针对二叉树,分别使用顺序存储和链式存储来实现树。 01、数组实现 我们在上一节中说过,
书节上回,我们接着聊二叉树,N叉树,以及树的存储。 01、满二叉树 如果一个二叉树,除最后一层节点外,每一层的节点数都达到最大值,即每个节点都有两个子节点,同时所有叶子节点都在最后一层,则这个
树是一种非线性数据结构,是以分支关系定义的层次结构,因此形态上和自然界中的倒挂的树很像,而数据结构中树根向上树叶向下。 什么是树? 01、定义 树是由n(n>=0)个元素节点组成的
操作系统的那棵“树” 今天从一颗 开始,我们看看如何从小树苗长成一颗苍天大树。 运转CPU CPU运转起来很简单,就是不断的从内存取值执行。 CPU没有好好运转 IO是个耗费时间的活,如果CPU在取值
我想为海洋生物学类(class)制作一个简单的系统发育树作为教育示例。我有一个具有分类等级的物种列表: Group <- c("Benthos","Benthos","Benthos","Be
我从这段代码中删除节点时遇到问题,如果我插入数字 12 并尝试删除它,它不会删除它,我尝试调试,似乎当它尝试删除时,它出错了树的。但是,如果我尝试删除它已经插入主节点的节点,它将删除它,或者我插入数字
B+ 树的叶节点链接在一起。将 B+ 树的指针结构视为有向图,它不是循环的。但是忽略指针的方向并将其视为链接在一起的无向叶节点会在图中创建循环。 在 Haskell 中,如何将叶子构造为父内部节点的子
我在 GWT 中使用树控件。我有一个自定义小部件,我将其添加为 TreeItem: Tree testTree = new Tree(); testTree.addItem(myWidget); 我想
它有点像混合树/链表结构。这是我定义结构的方式 struct node { nodeP sibling; nodeP child; nodeP parent; char
我编写了使用队列遍历树的代码,但是下面的出队函数生成错误,head = p->next 是否有问题?我不明白为什么这部分是错误的。 void Levelorder(void) { node *tmp,
例如,我想解析以下数组: var array1 = ["a.b.c.d", "a.e.f.g", "a.h", "a.i.j", "a.b.k"] 进入: var json1 = { "nod
问题 -> 给定一棵二叉树和一个和,确定该树是否具有从根到叶的路径,使得沿路径的所有值相加等于给定的和。 我的解决方案 -> public class Solution { public bo
我有一个创建 java 树的任务,它包含三列:运动名称、运动类别中的运动计数和上次更新。类似的东西显示在下面的图像上: 如您所见,有 4 种运动:水上运动、球类运动、跳伞运动和舞蹈运动。当我展开 sk
我想在 H2 数据库中实现 B+ Tree,但我想知道,B+ Tree 功能在 H2 数据库中可用吗? 最佳答案 H2 已经使用了 B+ 树(PageBtree 类)。 关于mysql - H2数据库
假设我们有 5 个字符串数组: String[] array1 = {"hello", "i", "cat"}; String[] array2 = {"hello", "i", "am"}; Str
我是一名优秀的程序员,十分优秀!