gpt4 book ai didi

Pytorch之扩充tensor的操作

转载 作者:qq735679552 更新时间:2022-09-29 22:32:09 28 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章Pytorch之扩充tensor的操作由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

我就废话不多说了,大家还是直接看代码吧~ 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
b = torch.zeros(( 3 , 2 , 6 , 6 ))
a = torch.zeros(( 3 , 2 , 1 , 1 ))
a.expand_as(b).size()
Out[ 32 ]: torch.Size([ 3 , 2 , 6 , 6 ])
a = torch.zeros(( 3 , 2 , 2 , 1 ))
a.expand_as(b).size()
Traceback (most recent call last):
  File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py" , line 3267 , in run_code
   exec (code_obj, self .user_global_ns, self .user_ns)
  File "<ipython-input-34-972575f79e92>" , line 1 , in <module>
   a.expand_as(b).size()
RuntimeError: The expanded size of the tensor ( 6 ) must match the existing size ( 2 ) at non - singleton dimension 2. Target sizes: [ 3 , 2 , 6 , 6 ]. Tensor sizes: [ 3 , 2 , 2 , 1 ]
a = torch.zeros(( 3 , 2 , 1 , 2 ))
a.expand_as(b).size()
Traceback (most recent call last):
  File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py" , line 3267 , in run_code
   exec (code_obj, self .user_global_ns, self .user_ns)
  File "<ipython-input-36-972575f79e92>" , line 1 , in <module>
   a.expand_as(b).size()
RuntimeError: The expanded size of the tensor ( 6 ) must match the existing size ( 2 ) at non - singleton dimension 3. Target sizes: [ 3 , 2 , 6 , 6 ]. Tensor sizes: [ 3 , 2 , 1 , 2 ]
a = torch.zeros(( 3 , 2 , 2 , 2 ))
a.expand_as(b).size()
Traceback (most recent call last):
  File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py" , line 3267 , in run_code
   exec (code_obj, self .user_global_ns, self .user_ns)
  File "<ipython-input-38-972575f79e92>" , line 1 , in <module>
   a.expand_as(b).size()
RuntimeError: The expanded size of the tensor ( 6 ) must match the existing size ( 2 ) at non - singleton dimension 3. Target sizes: [ 3 , 2 , 6 , 6 ]. Tensor sizes: [ 3 , 2 , 2 , 2 ]
a = torch.zeros(( 3 , 2 , 6 , 2 ))
a.expand_as(b).size()
Traceback (most recent call last):
  File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py" , line 3267 , in run_code
   exec (code_obj, self .user_global_ns, self .user_ns)
  File "<ipython-input-40-972575f79e92>" , line 1 , in <module>
   a.expand_as(b).size()
RuntimeError: The expanded size of the tensor ( 6 ) must match the existing size ( 2 ) at non - singleton dimension 3. Target sizes: [ 3 , 2 , 6 , 6 ]. Tensor sizes: [ 3 , 2 , 6 , 2 ]
a = torch.zeros(( 3 , 2 , 6 , 1 ))
a.expand_as(b).size()
Out[ 44 ]: torch.Size([ 3 , 2 , 6 , 6 ])
a = torch.zeros(( 3 , 2 , 1 , 6 ))
a.expand_as(b).size()
Out[ 46 ]: torch.Size([ 3 , 2 , 6 , 6 ])

tensor.expand_as在这里用于扩展tensor到目标形状,常用的多是在H和W方向上的扩展.

假设目标形状为N, C, H, W,则要求tensor.size()=n, c, h, w(这里假设N,C不变):

1、h=w=1 。

2、h=1, w!=1 。

3、h!=1, w=1 。

补充:tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度 。

在利用tensorflow进行文本挖掘工作的时候,经常涉及到维度扩展和压缩工作.

比如对文本进行embedding操作完成之后,若要进行卷积操作,就需要对embedded的向量扩展维度,将[batch_size, embedding_dims]扩展成为[batch_size, embedding_dims, 1],利用tf.expand_dims(input, -1)就可实现,反过来用squeeze(input, -1)或者tf.squeeze(input)也可以把最第三维去掉.

tf.expand_dims() 。

tf.squeeze() 。

tf.expand_dims()

?
1
tf.expand_dims( input , axis = None , name = None , dim = None )

在第axis位置增加一个维度. 。

给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数.

如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道].

例子 。

?
1
2
3
4
5
6
7
8
# 't' is a tensor of shape [2]
shape(expand_dims(t, 0 )) = = > [ 1 , 2 ]
shape(expand_dims(t, 1 )) = = > [ 2 , 1 ]
shape(expand_dims(t, - 1 )) = = > [ 2 , 1 ]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0 )) = = > [ 1 , 2 , 3 , 5 ]
shape(expand_dims(t2, 2 )) = = > [ 2 , 3 , 1 , 5 ]
shape(expand_dims(t2, 3 )) = = > [ 2 , 3 , 5 , 1 ]

tf.squeeze()

?
1
tf.squeeze( input , axis = None , name = None , squeeze_dims = None )

直接上例子 。

?
1
2
3
4
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
  shape(squeeze(t)) = = > [ 2 , 3 ]
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
  shape(squeeze(t, [ 2 , 4 ])) = = > [ 1 , 2 , 3 , 1 ]

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我。如有错误或未考虑完全的地方,望不吝赐教.

原文链接:https://blog.csdn.net/P_LarT/article/details/90145088 。

最后此篇关于Pytorch之扩充tensor的操作的文章就讲到这里了,如果你想了解更多关于Pytorch之扩充tensor的操作的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com