gpt4 book ai didi

matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)

转载 作者:qq735679552 更新时间:2022-09-29 22:32:09 26 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

在matplotlib中常用的标题主要三种:窗口标题、图像标题和子图标题。 先通过三个案例简要说明这三类标题的实现.

窗口标题、图像标题,子图标题(仅1个子图)

matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import matplotlib.pyplot as plt
 
plt.rcparams[ 'font.sans-serif' ] = 'simhei'
 
fig = plt.figure()
plt.plot([ 1 , 2 ])
# 设置图像标题
plt.suptitle( "这是图像标题" )
# 设置子图标题
plt.title( "这是子图标题" )
# 获取默认窗口标题
current_title = fig.canvas.manager.window.windowtitle()
print ( "默认窗口:" ,current_title)
# 设置窗口标题方式一
fig.canvas.set_window_title( "这是窗口标题" )
# 设置窗口标题方式二
fig.canvas.manager.window.setwindowtitle( "这是窗口标题" )
 
plt.show()

窗口标题、图像标题、子图标题(多子图)

使用subplot函数实现子图 。

matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import matplotlib.pyplot as plt
 
plt.rcparams[ 'font.sans-serif' ] = 'simhei'
 
fig = plt.figure()
plt.subplot( 1 , 2 , 1 )
plt.plot([ 1 , 2 , 3 , 4 ], [ 1 , 4 , 9 , 16 ], "go" )
# 设置子图1标题
plt.title( "子图1标题" )
 
plt.subplot( 122 )
plt.plot([ 1 , 2 , 3 , 4 ], [ 1 , 4 , 9 , 16 ], "r^" ) # r^ 表示 红色(red)三角
# 设置子图2标题
plt.title( "子图2标题" )
# 设置图像标题
plt.suptitle( "图像标题" )
# 设置窗口标题
#fig.canvas.set_window_title("这是窗口标题")
fig.canvas.manager.window.setwindowtitle( "这是窗口标题" )
 
plt.show()

使用subplots函数subplots实现子图

matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import matplotlib.pyplot as plt
 
plt.rcparams[ 'font.sans-serif' ] = 'simhei'
 
fig, ax = plt.subplots(nrows = 1 , ncols = 2 , figsize = ( 6 , 6 ))
ax[ 0 ].plot([ 1 , 2 , 3 , 4 ], [ 1 , 4 , 9 , 16 ], "go" )
# 设置子图1标题
ax[ 0 ].set_title( "子图1标题" )
ax[ 1 ].plot([ 1 , 2 , 3 , 4 ], [ 1 , 4 , 9 , 16 ], "r^" )
# 设置子图2标题
ax[ 1 ].set_title( "子图2标题" )
# 设置图像标题
plt.suptitle( "图像标题" )
# 设置窗口标题
fig.canvas.manager.window.setwindowtitle( "这是窗口标题" )
 
plt.show()

原理分析

通过前面三个案例可知:

窗口标题

设置窗口标题可以用两种方法: 一种是调用figure.canvas对象的set_window_title方法,一种是figure.canvas.manager.window对象的setwindowtitle方法。通过下面源码可知,这两种方法其实是等价的。 因此在日常实现过程中,关键是获取当前图像对象(figure),即案例中的fig。该方法只有一个参数,类型为字符串。 可以通过 。

通过figure.canvas.manager.window对象的windowtitle方法可以获取窗口标题.

?
1
2
3
class figuremanagerqt(figuremanagerbase):
   def set_window_title( self , title):
     self .window.setwindowtitle(title)

图像标题

调用plt.suptitle函数即可。根据源码可知,plt.suptitle函数其实是调用了当前figure对象的suptitle方法.

suptitle函数参数 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
   def suptitle( self , t, * * kwargs):
     """
     add a centered title to the figure.
 
     parameters
     ----------
     t : str
       the title text.
 
     x : float, default 0.5
       the x location of the text in figure coordinates.
 
     y : float, default 0.98
       the y location of the text in figure coordinates.
 
     horizontalalignment, ha : {'center', 'left', right'}, default: 'center'
       the horizontal alignment of the text relative to (*x*, *y*).
 
     verticalalignment, va : {'top', 'center', 'bottom', 'baseline'}, \
default: 'top'
       the vertical alignment of the text relative to (*x*, *y*).
 
     fontsize, size : default: :rc:`figure.titlesize`
       the font size of the text. see `.text.set_size` for possible
       values.
 
     fontweight, weight : default: :rc:`figure.titleweight`
       the font weight of the text. see `.text.set_weight` for possible
       values.
 
     returns
     -------
     text
       the `.text` instance of the title.
 
     other parameters
     ----------------
     fontproperties : none or dict, optional
       a dict of font properties. if *fontproperties* is given the
       default values for font size and weight are taken from the
       `.fontproperties` defaults. :rc:`figure.titlesize` and
       :rc:`figure.titleweight` are ignored in this case.
 
     **kwargs
       additional kwargs are `matplotlib.text.text` properties.
 
     examples
     --------
     >>> fig.suptitle('this is the figure title', fontsize=12)
     """

子图标题 。

  • 使用subplot函数:在所在子图中,使用plt.title函数。
  • 使用subplots函数:使用子图对象调用set_title方法。
  • plt.title函数和axes.set_title方法的参数相同。

注意,在使用subplots函数创建子图时,为什么不能使用plt.title函数设置子图标题呢? 根据title函数的源码可知,title函数其实是通过gca()函数获取子图,然后再调用set_title方法设置标题的。根据实验,在使用subplots函数函数创建多个子图时,plt.gca()只能得到最后一个子图的标题,因此,在某些情况下使用plt.title函数可设置最后一个子图的标题.

plt.title函数和axes.set_title方法源码 。

?
1
2
3
def title(label, fontdict = none, loc = none, pad = none, * , y = none, * * kwargs):
   return gca().set_title(
     label, fontdict = fontdict, loc = loc, pad = pad, y = y, * * kwargs)
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
axes.set_title( self , label, fontdict = none, loc = none, pad = none, * , y = none, * * kwargs):
   """
   set a title for the axes.
 
   set one of the three available axes titles. the available titles
   are positioned above the axes in the center, flush with the left
   edge, and flush with the right edge.
 
   parameters
   ----------
   label : str
     text to use for the title
 
   fontdict : dict
     a dictionary controlling the appearance of the title text,
     the default *fontdict* is::
 
       {'fontsize': rcparams['axes.titlesize'],
       'fontweight': rcparams['axes.titleweight'],
       'color': rcparams['axes.titlecolor'],
       'verticalalignment': 'baseline',
       'horizontalalignment': loc}
 
   loc : {'center', 'left', 'right'}, default: :rc:`axes.titlelocation`
     which title to set.
 
   y : float, default: :rc:`axes.titley`
     vertical axes loation for the title (1.0 is the top). if
     none (the default), y is determined automatically to avoid
     decorators on the axes.
 
   pad : float, default: :rc:`axes.titlepad`
     the offset of the title from the top of the axes, in points.
 
   returns
   -------
   `.text`
     the matplotlib text instance representing the title
 
   other parameters
   ----------------
   **kwargs : `.text` properties
     other keyword arguments are text properties, see `.text` for a list
     of valid text properties.
   """

plt.gca()实验 。

?
1
2
3
4
5
6
7
8
9
10
import matplotlib.pyplot as plt
 
plt.rcparams[ 'font.sans-serif' ] = 'simhei'
 
fig, ax = plt.subplots(nrows = 1 , ncols = 2 , figsize = ( 6 , 6 ))
ax[ 0 ].plot([ 1 , 2 , 3 , 4 ], [ 1 , 4 , 9 , 16 ], "go" )
ax[ 1 ].plot([ 1 , 2 , 3 , 4 ], [ 1 , 4 , 9 , 16 ], "r^" )
 
print (plt.gca())
print (ax[ 0 ],ax[ 1 ])

结果为 。

axessubplot(0.547727,0.11;0.352273x0.77) axessubplot(0.125,0.11;0.352273x0.77) axessubplot(0.547727,0.11;0.352273x0.77) 。

到此这篇关于matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)的文章就介绍到这了,更多相关matplotlib 标题内容请搜索我以前的文章或继续浏览下面的相关文章希望大家以后多多支持我! 。

原文链接:https://blog.csdn.net/mighty13/article/details/112725805 。

最后此篇关于matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)的文章就讲到这里了,如果你想了解更多关于matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com