gpt4 book ai didi

python 基于opencv去除图片阴影

转载 作者:qq735679552 更新时间:2022-09-29 22:32:09 35 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章python 基于opencv去除图片阴影由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

1、前言

如果你自己打印过东西,应该有过这种经历。如果用自己拍的图片,在手机上看感觉还是清晰可见,但是一打印出来就是漆黑一片。比如下面这两张图片:

python 基于opencv去除图片阴影

因为左边的图片有大片阴影,所以打印出来的图片不堪入目(因为打印要3毛钱,所以第二张图片只是我用程序模拟的效果).

那有什么办法可以解决吗?答案是肯定的,今天我们就来探讨几个去除阴影的方法.

2、如何去除阴影?

首先为了方便处理,我们通常会对图片进行灰度转换(即将图片转换成只有一个图层的灰色图像).

然后我们分析一下,在上面的图片中有三个主色调,分别是字体颜色(黑色)、纸张颜色(偏白)、阴影颜色(灰色)。知道这点后我们就好办了。我们只需要把灰色和白色部分都处理为白色就好了.

那要我怎么才知道白色和灰色区域呢?对于一个8位的灰度图,黑色部分的像素大致在0-30左右。白色和灰色应该在31-255左右(这个范围只是大致估计,实际情况需要看图片)。如图:

python 基于opencv去除图片阴影

左边是原图,右边是处理后的图片。我们将灰色和接近白色的部分都处理成了白色.

那下面我们就开始处理吧.

3、numpy的ndarray数组

可能有些读者没有接触过numpy,这里简单说一下.

numpy是一个第三方的模块,用它我们可以很方便的处理多维数组(ndarray数组)。而图片在OpenCV中的存储方式正好是ndarray,所以我们对数组的操作就是对图片的操作.

在使用之前我们需要安装一下OpenCV模块:

  1. pip install opencv-python

在安装OpenCV时会自动安装numpy.

下面我们主要是看看布尔索引的操作,先看下面代码:

  1. import numpy as np
  2. # 创建一个元素为1, 0, 1, 1的ndarray数组
  3. arr = np.array([1, 0, 1, 1])
  4. # 判断数组中有没有0
  5. res = arr == 0
  6. # 将数组中为0的元素赋值为10
  7. arr[res] = 10

如果没有接触过numpy会不太理解上面的语法。我们来详细说一下:

1.创建ndarray数组:我们通过np.array可以将现有的列表转换成一个ndarray对象,这个很好理解 。

2.判断数组中有没有0:我们可以直接用ndarray对象来判断,比如:arr == 0,他会返回一个元素结构和数量一样的ndarray对象。但是返回的对象原始类型是bool,我们来看看res的输出:

  1. [False True False False]

从结果可以看出,我们比较arr==0就是对数组中每个元素进行比较,并返回比较的布尔值.

3.将数组中为0的元素赋值为10:而最难理解的arr[res]操作。它其实就是拿到res中为True的视图,比如上面的结果是第二个为True则只会返回第二个元素的视图。我们执行下面的代码:

  1. arr[res] = 10

就是把对应res为True的部分赋值为10,也就是将arr中值为0的部分赋值为10.

下面是arr最后的结果:

  1. [ 1 10 1 1]

可以看到原本的0处理为了10.

4、去除阴影

现在我们知道了布尔索引,我们可以对图片进行处理了。我们只需要读取图片,然后将像素值大于30的部分处理为白色就好了。下面是我们的代码:

  1. import cv2
  2. # 读取图片
  3. img = cv2.imread('page.jpg', 0)
  4. # 将像素值大于30的部分修改为255(白色)
  5. img[img > 30] = 255
  6. # 保存修改后的图片
  7. cv2.imwrite('res.jpg', img)

上面的代码非常简单,我们使用cv2.imread函数读取图片,第一个参数是图片路径,第二个参数表示读取为灰度图。我们来看看效果图:

python 基于opencv去除图片阴影

可以看到阴影部分被很好地去除了。有些字比较模糊,我们可以通过调节灰白色的范围调整。比如:

  1. img[img > 40] = 255

具体的值就要根据要处理的图片来决定了.

5、改进

对于上面的处理,还可以做一个小小的改进。我们可以让纸张颜色不那么白,我们来看改进后的代码:

  1. import cv2
  2. import numpy as np
  3. img = cv2.imread('page.jpg', 0)
  4. # 计算灰白色部分像素的均值
  5. pixel = int(np.mean(img[img > 140]))
  6. # 把灰白色部分修改为与背景接近的颜色
  7. img[img > 30] = pixel
  8. cv2.imwrite('res.jpg', img)

在上面的代码中我们不再是将灰白色部分设置为255,而是事先计算了一个数值.

  1. pixel = int(np.mean(img[img > 140]))

猜测阴影部分的颜色值小于140,因此先索引出图像中大于140的部分。然后求平均值,这样我们算出来的大致就是原图的背景颜色,然后将图片不是文字的部分处理为背景颜色,就是最终结果了。下面是我们的效果图:

python 基于opencv去除图片阴影

可以看到这次效果要更好了。但是因为背景都是一个颜色,所以看起来还是会有一些差别.

不过有一点需要说一下,上面的操作只适用于比较简单的图片,比如试卷这种.

以上就是python 基于opencv去除图片阴影的详细内容,更多关于python 去除图片阴影的资料请关注我其它相关文章! 。

原文链接:https://cloud.tencent.com/developer/article/1763810 。

最后此篇关于python 基于opencv去除图片阴影的文章就讲到这里了,如果你想了解更多关于python 基于opencv去除图片阴影的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

35 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com