- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章OpenCV-Python使用分水岭算法实现图像的分割与提取由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
随着当今世界的发展,计算机视觉技术的应用越来越广泛。伴随着硬件设备的不断升级,构造复杂的计算机视觉应用变得越来越容易了。OpenCV像是一个黑盒,让我们专注于视觉应用的开发,而不必过多的关注基础图象处理的具体细节.
了解分水岭算法之前,我们需要了解什么是图像的分割.
在图像的处理过程中,经常需要从图像中将前景对象作为目标图像分割或者提取出来。例如,在视频监控中,观测到的是固定背景下的视频内容,而我们对背景本身并无兴趣,感兴趣的是背景中出现的车辆,行人或者其他对象。我们希望将这些对象从视频中提取出来,而忽略那些没有对象进入背景的视频内容.
图像分割是图像处理过程中一种非常重要的操作。分水岭算法将图像形象地比喻为地理学上的地形表面,实现图像分割,该算法非常有用.
下面,博主对分水岭算法的相关内容做简单的介绍。(详细可以参考冈萨雷斯的《数字图像处理》一书) 。
任何一副灰度图像,都可以被看作是地理学上的地形表面,灰度值越高的区域可以被看成是山峰,灰度值越低的区域可以被看成是山谷.
如果我们向每个山谷中灌注不同颜色的水。那么随着水位的不断升高,不同山谷的水就汇聚到一起。在这个过程中,为了防止不同山谷的水交汇,我们需要在水流可能汇合的地方构建堤坝。该过程将图像分为两个不同的集合:集水盆地和分水岭线。我们构建的堤坝就是分水岭线,也即对原始图像的分割。这就是分水岭算法的原理.
不过,一般的图像都存在着噪声,采用分水岭算法时,会经常得到过度分割的结果。为了改善图像分割的效果,人们提出了基于掩摸的改进的分水岭算法。改进的分水岭算法允许用户将它认为是同一个分割区域的部分标注出来。这样,分水岭算法在处理时,就会将标注的部分处理为同一个分割区域.
如果对于该理论不怎么了解,可以使用软件PowerPoint中的“删除背景”功能进行观察配合理解.
在OpenCV中,可以使用函数cv2.watershed()函数实现分水岭算法。不过,具体实现的过程,还需要借助形态学函数,距离变换函数cv2.distanceTransform(),cv2.connectedComponents()来完成图像分割.
在使用分水岭算法之前,我们需要对图像进行简单的形态学处理。一般情况下,我们都是使用形态学中的开运算,因为开运算是先腐蚀后膨胀的操作,能够去除图像内的噪声.
import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread("36.jpg")k=np.ones((5,5),dtype=np.uint8)e=cv2.erode(img,k)result=cv2.subtract(img,e)plt.subplot(131)plt.imshow(img, cmap="gray")plt.axis('off')plt.subplot(132)plt.imshow(e, cmap="gray")plt.axis('off')plt.subplot(133)plt.imshow(result, cmap="gray")plt.axis('off')plt.show()
回顾一下,我们前面的开运算函数为cv2.erode(),这里我们首先经过开运算去除噪声。然后减法运算cv2.subtract()获取图像边界。运行之后,效果如下:
当图像内的各个子图没有连接时,可以直接使用形态学的腐蚀操作确定前景对象,但是如果图像内的子图连接在一起时,就很难确定前景对象了。这个时候,就需要借助变换函数cv2.distanceTransform()方便地将前景对象提取出来.
cv2.distanceTransform()反应了各个像素点与背景(值为0的像素点)的距离关系。通常情况下:
下面,我们来使用该函数确定一副图像的前景,并观察效果.
import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread("36.jpg")gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)k = np.ones((5, 5), dtype=np.uint8)opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, k, iterations=2)distTransform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)ret, fore = cv2.threshold(distTransform, 0.7 * distTransform.max(), 255, 0)plt.subplot(131)plt.imshow(img, cmap="gray")plt.axis('off')plt.subplot(132)plt.imshow(distTransform, cmap="gray")plt.axis('off')plt.subplot(133)plt.imshow(fore, cmap="gray")plt.axis('off')plt.show()
这里,我们使用cv2.morphologyEx函数进行开运算,同时使用cv2.distanceTransform得到距离图像,最后在通过cv2.threshold对距离图像进行阈值处理,确定前景。运行之后,效果如下:
通过距离函数,我们获取到了图像的“中心”,也就是“确定前景”。为了方便后续的讲解,我们将确定前景称为F.
图像中有了确定前景F和确定背景B,剩下的区域就是未知区域UN了。这部分区域正是分水岭算法要进一步明确的区域.
针对一副图像0,通过以下关系能够得到未知区域UN:
未知区域UN=图像0-确定背景B-确定前景F 。
由上述公式变换得到:
未知区域UN=(图像0-确定背景B)-确定前景F 。
其中(图像0-确定背景B)就是我们开始的减法操作,通过形态学膨胀得到。也只需要将上面的代码添加4行并更改显示的代码内容:
bg=cv2.dilate(opening,k,iterations=3)fore=np.uint8(fore)un=cv2.subtract(bg,fore)plt.subplot(221)plt.imshow(img, cmap="gray")plt.axis('off')plt.subplot(222)plt.imshow(bg, cmap="gray")plt.axis('off')plt.subplot(223)plt.imshow(fore, cmap="gray")plt.axis('off')plt.subplot(224)plt.imshow(un, cmap="gray")plt.axis('off')plt.show()
运行之后,效果如下:
左上为原图 。
右上为原图膨胀后得到的图像bg,其背景图像是确定背景B。前景图像是“原始图像0-确定背景B” 。
左下为确定前景图像fore 。
右下为未知区域图像UN 。
明确了确定前景后,就可以对确定前景进行标注了。在OpenCV中,它提供了cv2.ConnectedComponents()函数进行标注.
该函数会将背景标注为0,将其他的对象使用从1开始的正整数标注。它只有一个参数8位单通道的待标注图像.
返回值有两个:retval为返回的标注数量,labels为标注的结果图像.
下面,我们来使用该函数进行标注。代码如下(同样更改上面bg下面代码就行):
bg = cv2.dilate(opening, k, iterations=3)fore = np.uint8(fore)ret, markets = cv2.connectedComponents(fore)unknown=cv2.subtract(bg,fore)markets=markets+1markets[unknown==255]=0plt.subplot(131)plt.imshow(img, cmap="gray")plt.axis('off')plt.subplot(132)plt.imshow(fore, cmap="gray")plt.axis('off')plt.subplot(133)plt.imshow(markets, cmap="gray")plt.axis('off')plt.show()
修改上面fore = np.uint8(fore)的代码,并修改输出内容。运行之后,我们会得到原图,前景图像的中心点图像fore以及标注后的结果图像markets。效果如下:
经过前文的介绍,我们了解了使用分水岭算法进行图像分割的基本步骤:
完整代码如下:
cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread("36.jpg")plt.subplot(121)plt.imshow(img, cmap="gray")plt.axis('off')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)k = np.ones((5, 5), dtype=np.uint8)opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, k, iterations=2)distTransform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)ret, fore = cv2.threshold(distTransform, 0.2 * distTransform.max(), 255, 0)bg = cv2.dilate(opening, k, iterations=3)fore = np.uint8(fore)ret, markets = cv2.connectedComponents(fore)unknown = cv2.subtract(bg, fore)markets = markets + 1markets[unknown == 255] = 0markets = cv2.watershed(img, markets)img[markets == -1] = [255, 0, 0]plt.subplot(122)plt.imshow(img, cmap="gray")plt.axis('off')plt.show()
运行之后,我们就可以得到分割的图像:
当然,参数可以调整,可以看到大致的硬币被完整的分割出来了.
到此这篇关于OpenCV-Python使用分水岭算法实现图像的分割与提取的文章就介绍到这了,更多相关OpenCV图像分割与提取内容请搜索我以前的文章或继续浏览下面的相关文章希望大家以后多多支持我! 。
原文链接:https://liyuanjinglyj.blog.csdn.net/article/details/114072952 。
最后此篇关于OpenCV-Python使用分水岭算法实现图像的分割与提取的文章就讲到这里了,如果你想了解更多关于OpenCV-Python使用分水岭算法实现图像的分割与提取的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我正在尝试学习 Knockout 并尝试创建一个照片 uploader 。我已成功将一些图像存储在数组中。现在我想回帖。在我的 knockout 码(Javascript)中,我这样做: 我在 Jav
我正在使用 php 编写脚本。我的典型问题是如何在 mysql 中添加一个有很多替代文本和图像的问题。想象一下有机化学中具有苯结构的描述。 最有效的方法是什么?据我所知,如果我有一个图像,我可以在数据
我在两个图像之间有一个按钮,我想将按钮居中到图像高度。有人可以帮帮我吗? Entrar
下面的代码示例可以在这里查看 - http://dev.touch-akl.com/celebtrations/ 我一直在尝试做的是在 Canvas 上绘制 2 个图像(发光,然后耀斑。这些图像的链接
请检查此https://jsfiddle.net/rhbwpn19/4/ 图像预览对于第一篇帖子工作正常,但对于其他帖子则不然。 我应该在这里改变什么? function readURL(input)
我对 Canvas 有疑问。我可以用单个图像绘制 Canvas ,但我不能用单独的图像绘制每个 Canvas 。- 如果数据只有一个图像,它工作正常,但数据有多个图像,它不工作你能帮帮我吗? va
我的问题很简单。如何获取 UIImage 的扩展类型?我只能将图像作为 UIImage 而不是它的名称。图像可以是静态的,也可以从手机图库甚至文件路径中获取。如果有人可以为此提供一点帮助,将不胜感激。
我有一个包含 67 个独立路径的 SVG 图像。 是否有任何库/教程可以为每个路径创建单独的光栅图像(例如 PNG),并可能根据路径 ID 命名它们? 最佳答案 谢谢大家。我最终使用了两个答案的组合。
我想将鼠标悬停在一张图片(音乐专辑)上,然后播放一张唱片,所以我希望它向右移动并旋转一点,当它悬停时我希望它恢复正常动画片。它已经可以向右移动,但我无法让它随之旋转。我喜欢让它尽可能简单,因为我不是编
Retina iOS 设备不显示@2X 图像,它显示 1X 图像。 我正在使用 Xcode 4.2.1 Build 4D502,该应用程序的目标是 iOS 5。 我创建了一个测试应用(主/细节)并添加
我正在尝试从头开始以 Angular 实现图像 slider ,并尝试复制 w3school基于图像 slider 。 下面我尝试用 Angular 实现,谁能指导我如何使用 Angular 实现?
我正在尝试获取图像的图像数据,其中 w= 图像宽度,h = 图像高度 for (int i = x; i imageData[pos]>0) //Taking data (here is the pr
我的网页最初通过在 javascript 中动态创建图像填充了大约 1000 个缩略图。由于权限问题,我迁移到 suPHP。现在不用标准 标签本身 我正在通过这个 php 脚本进行检索 $file
我正在尝试将 python opencv 图像转换为 QPixmap。 我按照指示显示Page Link我的代码附在下面 img = cv2.imread('test.png')[:,:,::1]/2
我试图在这个 Repository 中找出语义分割数据集的 NYU-v2 . 我很难理解图像标签是如何存储的。 例如,给定以下图像: 对应的标签图片为: 现在,如果我在 OpenCV 中打开标签图像,
import java.util.Random; class svg{ public static void main(String[] args){ String f="\"
我有一张 8x8 的图片。 (位图 - 可以更改) 我想做的是能够绘制一个形状,给定一个 Path 和 Paint 对象到我的 SurfaceView 上。 目前我所能做的就是用纯色填充形状。我怎样才
要在页面上显示图像,你需要使用源属性(src)。src 指 source 。源属性的值是图像的 URL 地址。 定义图像的语法是: 在浏览器无法载入图像时,替换文本属性告诉读者她们失去的信息。此
**MMEditing是基于PyTorch的图像&视频编辑开源工具箱,支持图像和视频超分辨率(super-resolution)、图像修复(inpainting)、图像抠图(matting)、
我正在尝试通过资源文件将图像插入到我的程序中,如下所示: green.png other files 当我尝试使用 QImage 或 QPixm
我是一名优秀的程序员,十分优秀!