gpt4 book ai didi

C++实现LeetCode(10.正则表达式匹配)

转载 作者:qq735679552 更新时间:2022-09-27 22:32:09 34 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章C++实现LeetCode(10.正则表达式匹配)由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

[LeetCode] 10. Regular Expression Matching 正则表达式匹配

Given an input string (s) and a pattern (p), implement regular expression matching with support for '.' and '*'. 。

'.' Matches any single character. '*' Matches zero or more of the preceding element. 。

The matching should cover the entire input string (not partial). 。

Note

  • s could be empty and contains only lowercase letters a-z.
  • p could be empty and contains only lowercase letters a-z, and characters like . or *.

Example 1

Input: s = "aa" p = "a" Output: false Explanation: "a" does not match the entire string "aa". 。

Example 2

Input: s = "aa" p = "a*" Output: true Explanation: '*' means zero or more of the precedeng element, 'a'. Therefore, by repeating 'a' once, it becomes "aa". 。

Example 3

Input: s = "ab" p = ".*" Output: true Explanation: ".*" means "zero or more (*) of any character (.)". 。

Example 4

Input: s = "aab" p = "c*a*b" Output: true Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore it matches "aab". 。

Example 5

Input: s = "mississippi" p = "mis*is*p*." Output: false 。

这道求正则表达式匹配的题和那道 Wildcard Matching 的题很类似,不同点在于*的意义不同,在之前那道题中,*表示可以代替任意个数的字符,而这道题中的*表示之前那个字符可以有0个,1个或是多个,就是说,字符串 a*b,可以表示b或是 aaab,即a的个数任意,这道题的难度要相对之前那一道大一些,分的情况的要复杂一些,需要用递归 Recursion 来解,大概思路如下:

- 若p为空,若s也为空,返回 true,反之返回 false.

- 若p的长度为1,若s长度也为1,且相同或是p为 '.' 则返回 true,反之返回 false.

- 若p的第二个字符不为*,若此时s为空返回 false,否则判断首字符是否匹配,且从各自的第二个字符开始调用递归函数匹配.

- 若p的第二个字符为*,进行下列循环,条件是若s不为空且首字符匹配(包括 p[0] 为点),调用递归函数匹配s和去掉前两个字符的p(这样做的原因是假设此时的星号的作用是让前面的字符出现0次,验证是否匹配),若匹配返回 true,否则s去掉首字母(因为此时首字母匹配了,我们可以去掉s的首字母,而p由于星号的作用,可以有任意个首字母,所以不需要去掉),继续进行循环.

- 返回调用递归函数匹配s和去掉前两个字符的p的结果(这么做的原因是处理星号无法匹配的内容,比如 s="ab", p="a*b",直接进入 while 循环后,我们发现 "ab" 和 "b" 不匹配,所以s变成 "b",那么此时跳出循环后,就到最后的 return 来比较 "b" 和 "b" 了,返回 true。再举个例子,比如 s="", p="a*",由于s为空,不会进入任何的 if 和 while,只能到最后的 return 来比较了,返回 true,正确).

解法一:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public :
     bool isMatch(string s, string p) {
         if (p.empty()) return s.empty();
         if (p.size() == 1) {
             return (s.size() == 1 && (s[0] == p[0] || p[0] == '.' ));
         }
         if (p[1] != '*' ) {
             if (s.empty()) return false ;
             return (s[0] == p[0] || p[0] == '.' ) && isMatch(s.substr(1), p.substr(1));
         }
         while (!s.empty() && (s[0] == p[0] || p[0] == '.' )) {
             if (isMatch(s, p.substr(2))) return true ;
             s = s.substr(1);
         }
         return isMatch(s, p.substr(2));
     }
};

上面的方法可以写的更加简洁一些,但是整个思路还是一样的,先来判断p是否为空,若为空则根据s的为空的情况返回结果。当p的第二个字符为*号时,由于*号前面的字符的个数可以任意,可以为0,那么我们先用递归来调用为0的情况,就是直接把这两个字符去掉再比较,或者当s不为空,且第一个字符和p的第一个字符相同时,再对去掉首字符的s和p调用递归,注意p不能去掉首字符,因为*号前面的字符可以有无限个;如果第二个字符不为*号,那么就老老实实的比较第一个字符,然后对后面的字符串调用递归,参见代码如下:

解法二:

?
1
2
3
4
5
6
7
8
9
10
11
class Solution {
public :
     bool isMatch(string s, string p) {
         if (p.empty()) return s.empty();
         if (p.size() > 1 && p[1] == '*' ) {
             return isMatch(s, p.substr(2)) || (!s.empty() && (s[0] == p[0] || p[0] == '.' ) && isMatch(s.substr(1), p));
         } else {
             return !s.empty() && (s[0] == p[0] || p[0] == '.' ) && isMatch(s.substr(1), p.substr(1));
         }
     }
};

我们也可以用 DP 来解,定义一个二维的 DP 数组,其中 dp[i][j] 表示 s[0,i) 和 p[0,j) 是否 match,然后有下面三种情况(下面部分摘自这个帖子):

1.  P[i][j] = P[i - 1][j - 1], if p[j - 1] != '*' && (s[i - 1] == p[j - 1] || p[j - 1] == '.'); 2.  P[i][j] = P[i][j - 2], if p[j - 1] == '*' and the pattern repeats for 0 times; 3.  P[i][j] = P[i - 1][j] && (s[i - 1] == p[j - 2] || p[j - 2] == '.'), if p[j - 1] == '*' and the pattern repeats for at least 1 times. 。

解法三:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public :
     bool isMatch(string s, string p) {
         int m = s.size(), n = p.size();
         vector<vector< bool >> dp(m + 1, vector< bool >(n + 1, false ));
         dp[0][0] = true ;
         for ( int i = 0; i <= m; ++i) {
             for ( int j = 1; j <= n; ++j) {
                 if (j > 1 && p[j - 1] == '*' ) {
                     dp[i][j] = dp[i][j - 2] || (i > 0 && (s[i - 1] == p[j - 2] || p[j - 2] == '.' ) && dp[i - 1][j]);
                 } else {
                     dp[i][j] = i > 0 && dp[i - 1][j - 1] && (s[i - 1] == p[j - 1] || p[j - 1] == '.' );
                 }
             }
         }
         return dp[m][n];
     }
};

到此这篇关于C++实现LeetCode(10.正则表达式匹配)的文章就介绍到这了,更多相关C++实现正则表达式匹配内容请搜索我以前的文章或继续浏览下面的相关文章希望大家以后多多支持我! 。

原文链接:https://www.cnblogs.com/grandyang/p/4461713.html 。

最后此篇关于C++实现LeetCode(10.正则表达式匹配)的文章就讲到这里了,如果你想了解更多关于C++实现LeetCode(10.正则表达式匹配)的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com