- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章go语言编程学习实现图的广度与深度优先搜索由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
。
所谓图就是节点及其连接关系的集合。所以可以通过一个一维数组表示节点,外加一个二维数组表示节点之间的关系.
//图的矩阵实现typedef struct MGRAPH{ nodes int[]; //节点 edges int[][]; //边}mGraph;
然而对于一些实际问题,其邻接矩阵中可能存在大量的0值,此时可以通过邻接链表来表示稀疏图,其数据结构如图所示 。
其左侧为图的示意图,右侧为图的邻接链表。红字表示节点序号,链表中为与这个节点相连的节点,如1节点与2、5节点相连。由于在go中,可以很方便地使用数组来代替链表,所以其链表结构可以写为 。
package mainimport "fmt"type Node struct{ value int; //节点为int型};type Graph struct{ nodes []*Node edges map[Node][]*Node //邻接表示的无向图}
其中,map为Go语言中的键值索引类型,其定义格式为map[<op1>]<op2>,<op1>为键,<op2>为值。在图结构中,map[Node][]*Node表示一个Node对应一个Node指针所组成的数组.
下面将通过Go语言生成一个图 。
//增加节点//可以理解为Graph的成员函数func (g *Graph) AddNode(n *Node) { g.nodes = append(g.nodes, n)}//增加边func (g *Graph) AddEdge(u, v *Node) { g.edges[*u] = append(g.edges[*u],v) //u->v边 g.edges[*v] = append(g.edges[*v],u) //u->v边}//打印图func (g *Graph) Print(){ //range遍历 g.nodes,返回索引和值 for _,iNode:=range g.nodes{ fmt.Printf("%v:",iNode.value) for _,next:=range g.edges[*iNode]{ fmt.Printf("%v->",next.value) } fmt.Printf("") }}func initGraph() Graph{ g := Graph{} for i:=1;i<=5;i++{ g.AddNode(&Node{i,false}) } //生成边 A := [...]int{1,1,2,2,2,3,4} B := [...]int{2,5,3,4,5,4,5} g.edges = make(map[Node][]*Node)//初始化边 for i:=0;i<7;i++{ g.AddEdge(g.nodes[A[i]-1], g.nodes[B[i]-1]) } return g}func main(){ g := initGraph() g.Print()}
其运行结果为 。
PS E:Code> go run .goGraph.go1:2->5->2:1->3->4->5->3:2->4->4:2->3->5->5:1->2->4->
。
广度优先搜索(BFS)是最简单的图搜索算法,给定图的源节点后,向外部进行试探性地搜索。其特点是,通过与源节点的间隔来调控进度,即只有当距离源节点为 k k k的节点被搜索之后,才会继续搜索,得到距离源节点为 k + 1 k+1 k+1的节点.
对于图的搜索而言,可能存在重复的问题,即如果1搜索到2,相应地2又搜索到1,可能就会出现死循环。因此对于图中的节点,我们用searched对其进行标记,当其值为false时,说明没有被搜索过,否则则说明已经搜索过了.
type Node struct{ value int; searched bool;}/*func initGraph() Graph{ g := Graph{}*/ //相应地更改节点生成函数 for i:=1;i<=5;i++{ g.AddNode(&Node{i,false}) }/*...*/
此外,由于在搜索过程中会改变节点的属性,所以map所对应哈希值也会发生变化,即Node作为键值将无法对应原有的邻接节点,所以Graph中边的键值更替为节点的指针,这样即便节点的值发生变化,但其指针不会变化.
type Graph struct{ nodes []*Node edges map[*Node][]*Node //邻接表示的无向图}//增加边func (g *Graph) AddEdge(u, v *Node) { g.edges[u] = append(g.edges[u],v) //u->v边 g.edges[v] = append(g.edges[v],u) //u->v边}//打印图func (g *Graph) Print(){ //range遍历 g.nodes,返回索引和值 for _,iNode:=range g.nodes{ fmt.Printf("%v:",iNode.value) for _,next:=range g.edges[iNode]{ fmt.Printf("%v->",next.value) } fmt.Printf("") }}func initGraph() Graph{ g := Graph{} for i:=1;i<=9;i++{ g.AddNode(&Node{i,false}) } //生成边 A := [...]int{1,1,2,2,2,3,4,5,5,6,1} B := [...]int{2,5,3,4,5,4,5,6,7,8,9} g.edges = make(map[*Node][]*Node)//初始化边 for i:=0;i<11;i++{ g.AddEdge(g.nodes[A[i]-1], g.nodes[B[i]-1]) } return g}func (g *Graph) BFS(n *Node){ var adNodes[] *Node //存储待搜索节点 n.searched = true fmt.Printf("%d:",n.value) for _,iNode:=range g.edges[n]{ if !iNode.searched { adNodes = append(adNodes,iNode) iNode.searched=true fmt.Printf("%v ",iNode.value) } } fmt.Printf("") for _,iNode:=range adNodes{ g.BFS(iNode) }}func main(){ g := initGraph() g.Print() g.BFS(g.nodes[0])}
该图为 。
输出结果为 。
PS E:CodegoStudy> go run .goGraph.go1:2->5->9->2:1->3->4->5->3:2->4->4:2->3->5->5:1->2->4->6->7->6:5->8->7:5->8:6->9:1->//下面为BFS结果1:2 5 92:3 43:4:5:6 76:88:7:9:
。
深度优先遍历(DFS)与BFS的区别在于,后者的搜索过程可以理解为逐层的,即可将我们初始搜索的节点看成父节点,那么与该节点相连接的便是一代节点,搜索完一代节点再搜索二代节点。DFS则是从父节点搜索开始,一直搜索到末代节点,从而得到一个末代节点的一条世系;然后再对所有节点进行遍历,找到另一条世系,直至不存在未搜索过的节点.
其基本步骤为:
我们先实现第二步,即单个节点的最深搜索结果 。
func (g *Graph) visitNode(n *Node){ for _,iNode:= range g.edges[n]{ if !iNode.searched{ iNode.searched = true fmt.Printf("%v->",iNode.value) g.visitNode(iNode) return } }}func main(){ g := initGraph() g.nodes[0].searched = true fmt.Printf("%v->",g.nodes[0].value) g.visitNode(g.nodes[0])}
结果为 。
PS E:Code> go run .goGraph.go1->2->3->4->5->6->8->
即 。
可见,还有节点7、9未被访问.
完整的DFS算法只需在单点遍历之前,加上一个对所有节点的遍历即可 。
func (g *Graph) DFS(){ for _,iNode:=range g.nodes{ if !iNode.searched{ iNode.searched = true fmt.Printf("%v->",iNode.value) g.visitNode(iNode) fmt.Printf("") g.DFS() } }}func main(){ g := initGraph() g.nodes[0].searched = true fmt.Printf("%v->",g.nodes[0].value) g.visitNode(g.nodes[0])}
结果为 。
PS E:Code> go run .goGraph.go1->2->3->4->5->6->8->7->9->
以上就是go语言编程学习实现图的广度与深度优先搜索的详细内容,更多关于go语言实现图的广度与深度优先搜索的资料请关注我其它相关文章! 。
原文链接:https://blog.csdn.net/m0_37816922/article/details/103847843 。
最后此篇关于go语言编程学习实现图的广度与深度优先搜索的文章就讲到这里了,如果你想了解更多关于go语言编程学习实现图的广度与深度优先搜索的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
背景: 我最近一直在使用 JPA,我为相当大的关系数据库项目生成持久层的轻松程度给我留下了深刻的印象。 我们公司使用大量非 SQL 数据库,特别是面向列的数据库。我对可能对这些数据库使用 JPA 有一
我已经在我的 maven pom 中添加了这些构建配置,因为我希望将 Apache Solr 依赖项与 Jar 捆绑在一起。否则我得到了 SolarServerException: ClassNotF
interface ITurtle { void Fight(); void EatPizza(); } interface ILeonardo : ITurtle {
我希望可用于 Java 的对象/关系映射 (ORM) 工具之一能够满足这些要求: 使用 JPA 或 native SQL 查询获取大量行并将其作为实体对象返回。 允许在行(实体)中进行迭代,并在对当前
好像没有,因为我有实现From for 的代码, 我可以转换 A到 B与 .into() , 但同样的事情不适用于 Vec .into()一个Vec . 要么我搞砸了阻止实现派生的事情,要么这不应该发
在 C# 中,如果 A 实现 IX 并且 B 继承自 A ,是否必然遵循 B 实现 IX?如果是,是因为 LSP 吗?之间有什么区别吗: 1. Interface IX; Class A : IX;
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我正在阅读标准haskell库的(^)的实现代码: (^) :: (Num a, Integral b) => a -> b -> a x0 ^ y0 | y0 a -> b ->a expo x0
我将把国际象棋游戏表示为 C++ 结构。我认为,最好的选择是树结构(因为在每个深度我们都有几个可能的移动)。 这是一个好的方法吗? struct TreeElement{ SomeMoveType
我正在为用户名数据库实现字符串匹配算法。我的方法采用现有的用户名数据库和用户想要的新用户名,然后检查用户名是否已被占用。如果采用该方法,则该方法应该返回带有数据库中未采用的数字的用户名。 例子: “贾
我正在尝试实现 Breadth-first search algorithm , 为了找到两个顶点之间的最短距离。我开发了一个 Queue 对象来保存和检索对象,并且我有一个二维数组来保存两个给定顶点
我目前正在 ika 中开发我的 Python 游戏,它使用 python 2.5 我决定为 AI 使用 A* 寻路。然而,我发现它对我的需要来说太慢了(3-4 个敌人可能会落后于游戏,但我想供应 4-
我正在寻找 Kademlia 的开源实现C/C++ 中的分布式哈希表。它必须是轻量级和跨平台的(win/linux/mac)。 它必须能够将信息发布到 DHT 并检索它。 最佳答案 OpenDHT是
我在一本书中读到这一行:-“当我们要求 C++ 实现运行程序时,它会通过调用此函数来实现。” 而且我想知道“C++ 实现”是什么意思或具体是什么。帮忙!? 最佳答案 “C++ 实现”是指编译器加上链接
我正在尝试使用分支定界的 C++ 实现这个背包问题。此网站上有一个 Java 版本:Implementing branch and bound for knapsack 我试图让我的 C++ 版本打印
在很多情况下,我需要在 C# 中访问合适的哈希算法,从重写 GetHashCode 到对数据执行快速比较/查找。 我发现 FNV 哈希是一种非常简单/好/快速的哈希算法。但是,我从未见过 C# 实现的
目录 LRU缓存替换策略 核心思想 不适用场景 算法基本实现 算法优化
1. 绪论 在前面文章中提到 空间直角坐标系相互转换 ,测绘坐标转换时,一般涉及到的情况是:两个直角坐标系的小角度转换。这个就是我们经常在测绘数据处理中,WGS-84坐标系、54北京坐标系
在软件开发过程中,有时候我们需要定时地检查数据库中的数据,并在发现新增数据时触发一个动作。为了实现这个需求,我们在 .Net 7 下进行一次简单的演示. PeriodicTimer .
二分查找 二分查找算法,说白了就是在有序的数组里面给予一个存在数组里面的值key,然后将其先和数组中间的比较,如果key大于中间值,进行下一次mid后面的比较,直到找到相等的,就可以得到它的位置。
我是一名优秀的程序员,十分优秀!