gpt4 book ai didi

C# PLINQ 内存列表查询优化历程

转载 作者:qq735679552 更新时间:2022-09-27 22:32:09 27 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章C# PLINQ 内存列表查询优化历程由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

产品中(基于ASP.NET MVC开发)需要经常对药品名称及名称拼音码进行下拉匹配及结果查询。为了加快查询的速度,所以我最开始就将其加入内存中(大约有六万五千条数据).

下面附实体类.

?
1
2
3
4
5
6
public class drugInfo
{
   public int drug_nameid  { get ; set ; }
   public string drug_name  { get ; set ; }
   public string drug_search_code  { get ; set ; }
}

第一次做法:

?
1
2
3
4
5
6
Stopwatch stopWatch = new Stopwatch();
stopWatch.Start();
key = key.ToLower();
var resultList = cacheList.Where(m => m.drug_name.ToLower().Contains(key) || m.drug_search_code.ToLower().Contains(key)).ToList();
stopWatch.Stop();
double eMseconds = Math.Max(0, stopWatch.Elapsed.TotalSeconds);

刷新页面几次,得到个平均用时约35MS左右.

第二次做法:

为了减少CPU的运算,我们将LINQ表达式中的转小写操作优化一下,先在缓存列表上做些动作,将名称和搜索码先转小写存储.

下面为改进过的实体类.

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class drugInfo
{
   public int drug_nameid  { get ; set ; }
   public string drug_name  { get ; set ; }
   public string drug_search_code  { get ; set ; }
   public string lower_drug_name  { get ; set ; }
   public string lower_drug_search_code  { get ; set ; }
}
Stopwatch stopWatch = new Stopwatch();
stopWatch.Start();
key = key.ToLower();
var resultList = cacheList.Where(m => m.lower_drug_name.Contains(key) || m.lower_drug_search_code.Contains(key)).ToList();
stopWatch.Stop();
double eMseconds = Math.Max(0, stopWatch.Elapsed.TotalSeconds);
ViewBag.useTime = string .Format( "用时{0}秒\r\n" , eMseconds);

刷新页面几次,得到个平均用时约16MS左右.

虽然这样做,内存列表中会多一些冗余数据,但是得到的性能提升有一倍了.

第三次做法:

启用PLINQ的并行计算,并行计算是NET4.0的特性,可以利用CPU多核的处理能力,提高运算效率,但是不一定是成倍的 LIST等泛型启用并行计算很简单,使用AsParallel()即可,改进如下:

?
1
2
3
4
5
6
7
Stopwatch stopWatch = new Stopwatch();
stopWatch.Start();
key = key.ToLower();
var resultList = cacheList.AsParallel().Where(m => m.lower_drug_name.Contains(key) || m.lower_drug_search_code.Contains(key)).ToList();
stopWatch.Stop();
double eMseconds = Math.Max(0, stopWatch.Elapsed.TotalSeconds);
ViewBag.useTime = string .Format( "用时{0}秒\r\n" , eMseconds);

同样,我们多刷新页面几次,获得的平均时间为10MS左右.

当然,写到这里,大家以为这次的优化就结束了,至少我当时是这么想的。 --------------------------------------------------------------------------------------------------- 但是事实上,碰到了一个大麻烦.

由于产品运行于服务器IIS上面,使用AsParallel并行特性时(默认情况下,到底使用多少个线程来执行PLINQ是在程序运行时由TPL决定的。但是,如果你需要限制执行PLINQ查询的线程数目(通常需要这么做的原因是有多个用户同时使用系统,为了服务器能同时服务尽可能多的用户,必须限制单个用户占用的系统资源),我们可以使用ParallelEnumerable. WithDegreeOfParallelism()扩展方法达到此目的。),客户端一个请求就占用了过多的系统资源,导致应用程序池假死。无法提供服务.

我也尝试过使用WithDegreeOfParallelism设置了一个相对较少的值,但是在使用LOADRUNNER来开启200个并发的时候,也会产生假死的情况,于是,不得不尝试下面第四步的办法.

第四次做法:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Stopwatch stopWatch = new Stopwatch();
stopWatch.Start();
key = key.ToLower();
ConcurrentBag<drugInfo> resultList = new ConcurrentBag<drugInfo>();
Parallel.For(0, cacheList.Count, new ParallelOptions { MaxDegreeOfParallelism = 4 }, (i) =>
{
var item = cacheList[i];
if (item.lower_drug_name.Contains(key) || item.lower_drug_search_code.Contains(key))
{
resultList.Add(item);
}
});
stopWatch.Stop();
double eMseconds = Math.Max(0, stopWatch.Elapsed.TotalSeconds);
ViewBag.useTime = string .Format( "用时{0}秒\r\n" , eMseconds);

时间与第三步没有什么区别,但是这样做解决了并发时,应用程序池假死的问题。至此,困扰两天的问题完美解决,虽然使用Parallel.For会带来结果乱序的问题,但是结果数量已经不多了,再次排序也没有什么关系了.

具体原因参见下面:

ParallelOptions.MaxDegreeOfParallelism指明一个并行循环最多可以使用多少个线程。TPL开始调度执行一个并行循环时,通常使用的是线程池中的线程,刚开始时,如果线程池中的线程很忙,那么,可以为并行循环提供数量少一些的线程(但此数目至少为1,否则并行任务无法执行,必须阻塞等待)。等到线程池中的线程完成了一些工作,则分配给此并行循环的线程数目就可以增加,从而提升整个任务完成的速度,但最多不会超过ParallelOptions.MaxDegreeOfParallelism所指定的数目.

PLINQ的WithDegreeOfParallelism()则不一样,它必须明确地指出需要使用多少个线程来完成工作。当PLINQ查询执行时,会马上分配指定数目的线程执行查询.

之所以PLINQ不允许动态改变线程的数目,是因为许多PLINQ查询是“级联”的,为保证得到正确的结果,必须同步参与的多个线程。如果线程数目不定,则要实现线程同步非常困难.

有关C# PLINQ 内存列表查询优化历程小编就给大家介绍这么多,希望对大家有所帮助! 。

最后此篇关于C# PLINQ 内存列表查询优化历程的文章就讲到这里了,如果你想了解更多关于C# PLINQ 内存列表查询优化历程的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com