- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章numpy基础教程之np.linalg由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
前言 。
numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。本文讲给大家介绍关于numpy基础之 np.linalg的相关内容,下面话不多说了,来一起看看详细的介绍吧 。
(1)np.linalg.inv():矩阵求逆 。
(2)np.linalg.det():矩阵求行列式(标量) 。
np.linalg.norm 。
顾名思义,linalg=linear+algebra linalg=linear+algebra\mathrm{linalg=linear + algebra},norm norm\mathrm{norm}则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):
首先help(np.linalg.norm)查看其文档:
norm(x, ord=none, axis=none, keepdims=false)1 。
这里我们只对常用设置进行说明,x x\mathrm{x}表示要度量的向量,ord ord\mathrm{ord}表示范数的种类, 。
1
2
3
4
5
6
7
8
9
|
>>> x
=
np.array([
3
,
4
])
>>> np.linalg.norm(x)
5.
>>> np.linalg.norm(x,
ord
=
2
)
5.
>>> np.linalg.norm(x,
ord
=
1
)
7.
>>> np.linalg.norm(x,
ord
=
np.inf)
4123456789
|
范数理论的一个小推论告诉我们:ℓ 1 ≥ℓ 2 ≥ℓ ∞ ℓ1≥ℓ2≥ℓ∞ 。
总结 。
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我的支持.
原文链接:https://blog.csdn.net/lanchunhui/article/details/51004387 。
最后此篇关于numpy基础教程之np.linalg的文章就讲到这里了,如果你想了解更多关于numpy基础教程之np.linalg的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
Scipy 和 Numpy 在它们之间具有三个不同的函数来查找给定方阵的特征向量,它们是: numpy.linalg.eig(a) scipy.linalg.eig(a) , 和 scipy.spar
这是我的 numpy 数组: z [[ 3.90311860e-322 1.83939721e-001] [ 0.00000000e+000 1.83939721e-001] [ 0
公认的智慧是更喜欢 scipy.linalg 而不是 numpy.linalg 函数。为了进行线性代数,理想情况下(并且方便地)我想结合 numpy.array 和 scipy.linalg 的功能,
有人知道什么时候最好选择哪个吗?在我看来,它们是一样的... lsmr lsqr 最佳答案 两种软件包的功能相同。 LSMR基于2010年的Fong&Saunders算法(请参阅paper),并且最近
如果我们想通过使用正规方程来搜索线性回归模型的最佳参数 theta: theta = inv(X^T * X) * X^T * y 第一步是计算 inv(X^T*X)。因此 numpy 提供 np.l
要求解线性矩阵方程,可以使用 numpy.linalg.solve它实现了 LAPACK 例程 *gesv . 根据文档 DGESV computes the solution to a real s
问题描述 对于方阵,可以得到SVD X= USV' 分解,通过简单地使用 numpy.linalg.svd u,s,vh = numpy.linalg.svd(X) 例程或 numpy.lin
有没有办法提高numpy.linalg.eig()和scipy.linalg.eig()的输出精度? 我正在对角化一个非对称矩阵,但我希望在物理基础上得到正负特征值对的实谱。事实上,特征值确实成对出现
lstsq 尝试解决 Ax=b 最小化 |b - Ax|。 scipy 和 numpy 都提供了一个具有非常相似接口(interface)的 linalg.lstsq 函数。文档没有提到使用哪种算法,
如果我有一个由五个向量 v1...v5 组成的向量空间,则找到 A 的正交基,其中 A=[v1,v2...v5] 且 A 为 5Xn 我应该使用np.linalg.qr(A)还是scipy.linal
我必须求解 x 的大量“Ax=B”类型的线性矩阵方程,其中 A 是一个稀疏矩阵,主要填充主对角线,B 是一个向量。 我的第一种方法是通过 numpy.linalg.solve 使用密集的 numpy
我不太明白为什么 numpy.linalg.solve() 给出了更准确的答案,而 numpy.linalg.inv() 有点崩溃,给出 (我相信是)估计。 举一个具体的例子,我正在求解方程 C^{-
我有一个奇怪的现象,虽然 scipy.sparse.linalg.eigs 对于稀疏矩阵应该更快,但我知道它运行得比正常的 eigvals 方法慢scipy: In [4]: %timeit m.ca
我正在使用 Spark cluster 2.0,我想从 org.apache.spark.mllib.linalg.VectorUDT 转换一个向量至org.apache.spark.ml.linal
我有下面的代码,我使用命令 scipy.linalg.lu() 计算给定方阵的 L 矩阵,然后我再次执行相同的操作,除了然后应用于给定矩阵的稀疏形式使用 scipy.sparse.linalg.slu
我在学习SVD通过关注这个 MIT course . 矩阵构造为 C = np.matrix([[5,5],[-1,7]]) C matrix([[ 5, 5], [-1, 7]]
如何从org.apache.spark.mllib.linalg.SparseVector至org.apache.spark.ml.linalg.SparseVector ? 我正在从 mllib 转
有人可以帮我解决以下错误吗?我正在尝试将数据帧转换为 rdd,以便它可以用于回归模型构建。 Spark 版本:2.0.0 错误 => ClassCastException: org.apache.sp
我正在尝试在 Python 上实现最小二乘曲线拟合算法,我已经在 Matlab 上编写了它。但是,我无法获得正确的变换矩阵,而且问题似乎发生在求解步骤。 (编辑:我的变换矩阵在 Matlab 中非常准
前言 numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。本文讲给大家介绍关于numpy基础之 np.linalg的相关内容,下面
我是一名优秀的程序员,十分优秀!