- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章Redis 实战篇:巧用 Bitmap 实现亿级海量数据统计由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
在移动应用的业务场景中,我们需要保存这样的信息:一个 key 关联了一个数据集合.
常见的场景如下:
通常情况下,我们面临的用户数量以及访问量都是巨大的,比如百万、千万级别的用户数量,或者千万级别、甚至亿级别的访问信息.
所以,我们必须要选择能够非常高效地统计大量数据(例如亿级)的集合类型.
如何选择合适的数据集合,我们首先要了解常用的统计模式,并运用合理的数据类型来解决实际问题.
四种统计类型:
本文将由二值状态统计类型作为实战篇系列的开篇,文中将用到 String、Set、Zset、List、hash 以外的拓展数据类型 Bitmap 来实现.
文章涉及到的指令可以通过在线 Redis 客户端运行调试,地址:https://try.redis.io/,超方便的说.
。
多分享多付出,前期多给别人创造价值并且不计回报,从长远来看,这些付出都会成倍的回报你.
特别是刚开始跟别人合作的时候,不要去计较短期的回报,没有太大意义,更多的是锻炼自己的视野、视角以及解决问题的能力.
。
码哥,什么是二值状态统计呀?
也就是集合中的元素的值只有 0 和 1 两种,在签到打卡和用户是否登陆的场景中,只需记录签到(1)或 未签到(0),已登录(1)或未登陆(0).
假如我们在判断用户是否登陆的场景中使用 Redis 的 String 类型实现(key -> userId,value -> 0 表示下线,1 - 登陆),假如存储 100 万个用户的登陆状态,如果以字符串的形式存储,就需要存储 100 万个字符串了,内存开销太大.
码哥,为什么 String 类型内存开销大?
String 类型除了记录实际数据以外,还需要额外的内存记录数据长度、空间使用等信息.
当保存的数据包含字符串,String 类型就使用简单动态字符串(SDS)结构体来保存,如下图所示:
SDS 。
len:占 4 个字节,表示 buf 的已用长度.
alloc:占 4 个字节,表示 buf 实际分配的长度,通常 > len.
buf:字节数组,保存实际的数据,Redis 自动在数组最后加上一个 “\0”,额外占用一个字节的开销.
所以,在 SDS 中除了 buf 保存实际的数据, len 与 alloc 就是额外的开销.
另外,还有一个 RedisObject 结构的开销,因为 Redis 的数据类型有很多,而且,不同数据类型都有些相同的元数据要记录(比如最后一次访问的时间、被引用的次数等).
所以,Redis 会用一个 RedisObject 结构体来统一记录这些元数据,同时指向实际数据.
对于二值状态场景,我们就可以利用 Bitmap 来实现。比如登陆状态我们用一个 bit 位表示,一亿个用户也只占用 一亿 个 bit 位内存 ≈ (100000000 / 8/ 1024/1024)12 MB.
什么是 Bitmap 呢?
Bitmap 的底层数据结构用的是 String 类型的 SDS 数据结构来保存位数组,Redis 把每个字节数组的 8 个 bit 位利用起来,每个 bit 位 表示一个元素的二值状态(不是 0 就是 1).
可以将 Bitmap 看成是一个 bit 为单位的数组,数组的每个单元只能存储 0 或者 1,数组的下标在 Bitmap 中叫做 offset 偏移量.
为了直观展示,我们可以理解成 buf 数组的每个字节用一行表示,每一行有 8 个 bit 位,8 个格子分别表示这个字节中的 8 个 bit 位,如下图所示:
Bitmap 。
8 个 bit 组成一个 Byte,所以 Bitmap 会极大地节省存储空间。 这就是 Bitmap 的优势.
。
怎么用 Bitmap 来判断海量用户中某个用户是否在线呢?
Bitmap 提供了 GETBIT、SETBIT 操作,通过一个偏移值 offset 对 bit 数组的 offset 位置的 bit 位进行读写操作,需要注意的是 offset 从 0 开始.
只需要一个 key = login_status 表示存储用户登陆状态集合数据, 将用户 ID 作为 offset,在线就设置为 1,下线设置 0。通过 GETBIT判断对应的用户是否在线。50000 万 用户只需要 6 MB 的空间.
。
设置或者清空 key 的 value 在 offset 处的 bit 值(只能是 0 或者 1).
。
获取 key 的 value 在 offset 处的 bit 位的值,当 key 不存在时,返回 0.
假如我们要判断 ID = 10086 的用户的登陆情况:
第一步,执行以下指令,表示用户已登录.
第二步,检查该用户是否登陆,返回值 1 表示已登录.
第三步,登出,将 offset 对应的 value 设置成 0.
用户每个月的签到情况在签到统计中,每个用户每天的签到用 1 个 bit 位表示,一年的签到只需要 365 个 bit 位。一个月最多只有 31 天,只需要 31 个 bit 位即可.
比如统计编号 89757 的用户在 2021 年 5 月份的打卡情况要如何进行?
key 可以设计成 uid:sign:{userId}:{yyyyMM},月份的每一天的值 - 1 可以作为 offset(因为 offset 从 0 开始,所以 offset = 日期 - 1).
第一步,执行下面指令表示记录用户在 2021 年 5 月 16 号打卡.
第二步,判断编号 89757 用户在 2021 年 5 月 16 号是否打卡.
第三步,统计该用户在 5 月份的打卡次数,使用 BITCOUNT 指令。该指令用于统计给定的 bit 数组中,值 = 1 的 bit 位的数量.
这样我们就可以实现用户每个月的打卡情况了,是不是很赞.
如何统计这个月首次打卡时间呢?
Redis 提供了 BITPOS key bitValue [start] [end]指令,返回数据表示 Bitmap 中第一个值为 bitValue 的 offset 位置.
在默认情况下, 命令将检测整个位图, 用户可以通过可选的 start 参数和 end参数指定要检测的范围.
所以我们可以通过执行以下指令来获取 userID = 89757 在 2021 年 5 月份首次打卡日期:
需要注意的是,我们需要将返回的 value + 1 ,因为 offset 从 0 开始.
。
在记录了一个亿的用户连续 7 天的打卡数据,如何统计出这连续 7 天连续打卡用户总数呢?
我们把每天的日期作为 Bitmap 的 key,userId 作为 offset,若是打卡则将 offset 位置的 bit 设置成 1.
key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录.
一共有 7 个这样的 Bitmap,如果我们能对这 7 个 Bitmap 的对应的 bit 位做 『与』运算.
同样的 UserID offset 都是一样的,当一个 userID 在 7 个 Bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡.
结果保存到一个新 Bitmap 中,我们再通过 BITCOUNT 统计 bit = 1 的个数便得到了连续打卡 7 天的用户总数了.
Redis 提供了 BITOP operation destkey key [key ...]这个指令用于对一个或者多个 键 = key 的 Bitmap 进行位元操作.
opration 可以是 and、OR、NOT、XOR。当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作 0 。空的 key 也被看作是包含 0的字符串序列.
便于理解,如下图所示:
BITOP 。
3 个 Bitmap,对应的 bit 位做「与」操作,结果保存到新的 Bitmap 中.
操作指令表示将 三个 bitmap 进行 AND 操作,并将结果保存到 destmap 中。接着对 destmap 执行 BITCOUNT 统计.
简单计算下 一个一亿个位的 Bitmap占用的内存开销,大约占 12 MB 的内存(10^8/8/1024/1024),7 天的 Bitmap 的内存开销约为 84 MB。同时我们最好给 Bitmap 设置过期时间,让 Redis 删除过期的打卡数据,节省内存.
。
思路才是最重要,当我们遇到的统计场景只需要统计数据的二值状态,比如用户是否存在、 ip 是否是黑名单、以及签到打卡统计等场景就可以考虑使用 Bitmap.
只需要一个 bit 位就能表示 0 和 1。在统计海量数据的时候将大大减少内存占用.
原文链接:https://mp.weixin.qq.com/s/0fFqH83waCBiFZlM0lWIuQ 。
最后此篇关于Redis 实战篇:巧用 Bitmap 实现亿级海量数据统计的文章就讲到这里了,如果你想了解更多关于Redis 实战篇:巧用 Bitmap 实现亿级海量数据统计的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
背景: 我最近一直在使用 JPA,我为相当大的关系数据库项目生成持久层的轻松程度给我留下了深刻的印象。 我们公司使用大量非 SQL 数据库,特别是面向列的数据库。我对可能对这些数据库使用 JPA 有一
我已经在我的 maven pom 中添加了这些构建配置,因为我希望将 Apache Solr 依赖项与 Jar 捆绑在一起。否则我得到了 SolarServerException: ClassNotF
interface ITurtle { void Fight(); void EatPizza(); } interface ILeonardo : ITurtle {
我希望可用于 Java 的对象/关系映射 (ORM) 工具之一能够满足这些要求: 使用 JPA 或 native SQL 查询获取大量行并将其作为实体对象返回。 允许在行(实体)中进行迭代,并在对当前
好像没有,因为我有实现From for 的代码, 我可以转换 A到 B与 .into() , 但同样的事情不适用于 Vec .into()一个Vec . 要么我搞砸了阻止实现派生的事情,要么这不应该发
在 C# 中,如果 A 实现 IX 并且 B 继承自 A ,是否必然遵循 B 实现 IX?如果是,是因为 LSP 吗?之间有什么区别吗: 1. Interface IX; Class A : IX;
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我正在阅读标准haskell库的(^)的实现代码: (^) :: (Num a, Integral b) => a -> b -> a x0 ^ y0 | y0 a -> b ->a expo x0
我将把国际象棋游戏表示为 C++ 结构。我认为,最好的选择是树结构(因为在每个深度我们都有几个可能的移动)。 这是一个好的方法吗? struct TreeElement{ SomeMoveType
我正在为用户名数据库实现字符串匹配算法。我的方法采用现有的用户名数据库和用户想要的新用户名,然后检查用户名是否已被占用。如果采用该方法,则该方法应该返回带有数据库中未采用的数字的用户名。 例子: “贾
我正在尝试实现 Breadth-first search algorithm , 为了找到两个顶点之间的最短距离。我开发了一个 Queue 对象来保存和检索对象,并且我有一个二维数组来保存两个给定顶点
我目前正在 ika 中开发我的 Python 游戏,它使用 python 2.5 我决定为 AI 使用 A* 寻路。然而,我发现它对我的需要来说太慢了(3-4 个敌人可能会落后于游戏,但我想供应 4-
我正在寻找 Kademlia 的开源实现C/C++ 中的分布式哈希表。它必须是轻量级和跨平台的(win/linux/mac)。 它必须能够将信息发布到 DHT 并检索它。 最佳答案 OpenDHT是
我在一本书中读到这一行:-“当我们要求 C++ 实现运行程序时,它会通过调用此函数来实现。” 而且我想知道“C++ 实现”是什么意思或具体是什么。帮忙!? 最佳答案 “C++ 实现”是指编译器加上链接
我正在尝试使用分支定界的 C++ 实现这个背包问题。此网站上有一个 Java 版本:Implementing branch and bound for knapsack 我试图让我的 C++ 版本打印
在很多情况下,我需要在 C# 中访问合适的哈希算法,从重写 GetHashCode 到对数据执行快速比较/查找。 我发现 FNV 哈希是一种非常简单/好/快速的哈希算法。但是,我从未见过 C# 实现的
目录 LRU缓存替换策略 核心思想 不适用场景 算法基本实现 算法优化
1. 绪论 在前面文章中提到 空间直角坐标系相互转换 ,测绘坐标转换时,一般涉及到的情况是:两个直角坐标系的小角度转换。这个就是我们经常在测绘数据处理中,WGS-84坐标系、54北京坐标系
在软件开发过程中,有时候我们需要定时地检查数据库中的数据,并在发现新增数据时触发一个动作。为了实现这个需求,我们在 .Net 7 下进行一次简单的演示. PeriodicTimer .
二分查找 二分查找算法,说白了就是在有序的数组里面给予一个存在数组里面的值key,然后将其先和数组中间的比较,如果key大于中间值,进行下一次mid后面的比较,直到找到相等的,就可以得到它的位置。
我是一名优秀的程序员,十分优秀!