- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章NumPy-ndarray 的数据类型用法说明由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
数据类型,即 dtype ,也是一个特殊的对象, 它包含了ndarray需要为某一种类型数据所申明的内存块信息(也成为了元数据,即表示数据的数据) 。
dtype是NumPy能够与琪他系统数据灵活交互的原因。通常,其他系统提供一个硬盘或内存与数据的对应关系,使得利用C或Fortran等底层语言读写数据变得十分方便.
名称 | 描述 |
---|---|
bool_ | 布尔型数据类型(True 或者 False) |
int_ | 默认的整数类型(类似于 C 语言中的 long,int32 或 int64) |
intc | 与 C 的 int 类型一样,一般是 int32 或 int 64 |
intp | 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64) |
int8 | 字节(-128 to 127) |
int16 | 整数(-32768 to 32767) |
int32 | 整数(-2147483648 to 2147483647) |
int64 | 整数(-9223372036854775808 to 9223372036854775807) |
uint8 | 无符号整数(0 to 255) |
uint16 | 无符号整数(0 to 65535) |
uint32 | 无符号整数(0 to 4294967295) |
uint64 | 无符号整数(0 to 18446744073709551615) |
float_ | float64 类型的简写 |
float16 | 半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位 |
float32 | 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位 |
float64 | 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位 |
complex_ | complex128 类型的简写,即 128 位复数 |
complex64 | 复数,表示双 32 位浮点数(实数部分和虚数部分) |
complex128 | 复数,表示双 64 位浮点数(实数部分和虚数部分) |
使用astype方法来显式的转换数组的数据类型 。
arr = np.array([1,2,3,4,5])print(arr.dtype)print(arr)float_arr = arr.astype("float32")#也可以写作 arr.astype(np.float32)print(float_arr.dtype)print(float_arr)
int32 [1 2 3 4 5] float32 [1. 2. 3. 4. 5.] 。
注意:将内容为数字的字符串数组转为数字是可以的,当内容是浮点型数字的时候只能转成 float,不能 int,只有是整数的时候才可以转成int 。
用其他数组的dtype来转换数据类型:
int_arr = np.arange(10)calibers = np.array([.22, .270, .357], dtype=np.float64)print(calibers)arr_last = int_arr.astype(calibers.dtype)print(arr_last.dtype)print(arr_last)
[0.22 0.27 0.357] float64 [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] 。
补充:Python3:numpy的简单使用(ndarray的基本属性以及基本生成数组的方法) 。
由于本人学习需要,所以开始学习numpy,这个科学计算工具,本文用于复习当前所学习的内容(当前使用numpy的版本为:1.17.4) 。
1.ndarray的基本的属性 。
2.生成数组的方法(主要测试生成0和生成1的方法:ones和zeros方法) 。
# 测试当前Numpy中的narray中的属性# 使用的numpy的版本为:1.17.4import numpy as npdefault_array = [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6]]np_array = np.array(default_array)print("当前存储后的数据的dtype类型为:{}".format(np_array.dtype)) # int32print("查看这个对象的实际类型:{}".format(type(np_array))) #print("查看这个对象的形状:{}".format(np_array.shape)) # (2,6)print("当前这个对象的字节长度:{}".format(np_array.itemsize)) # 4print("当前这个对象的长度(使用python的len方法):{}".format(len(np_array))) # 2 只迭代了一组数据外层的二维数据print("当前这个对象的长度(使用自己的size方法):{}".format(np_array.size)) # 获取了所有的数据的数量print(np.array([[1, 2, 3], [1, 2, 3]]).dtype)print(np.array([1.2, 2.2, 3.2]).dtype)# 可以看出当前默认使用的类型为int32# 默认使用的浮点类型为:float64# 修改和设定当前的使用的初始化类型# print(np.array([[1.1,1.2,1.3]],dtype="int32").dtype)print(np.array([[1.1,1.2,1.3]],dtype=np.int32).dtype)
结果:
1.创建了二维数据的时候使用原生的python的len方法获取的长度是外层的长度,并不是二维数组实际内容的长度! 。
2.通过np.array(数组)将原来的python中的数组转换为ndarray类型的数据 。
3.每一个ndarray中都会有一个数据类型使用dtype表示,默认使用的整数类型为int32,浮点类型为float64 。
4.通过ndarray.size获取当前ndarray中的元素的个数 。
5.通过ndarray.shap获取当前的ndarray的形状 。
6.使用np.array()创建ndarray的时候可以指定当前的ndarray的dtype,其形式可以是字符也可以是np.类型 。
# 使用numpy中的生成的数组数据的方法import numpy as np# 生成1的操作np_array = np.zeros([2, 2])print("当前生成的数据为:{}".format(np_array))print("输出当前生成的数据的类型为:{}".format(np_array.dtype))# 说明当前默认产生的数据数据的类型为float64# 现在改变当前的dtype,直接将当前的dtype的数据类型设置为int32np_array.dtype = np.int32print("当前生成的数据为:{}".format(np_array))print("输出当前生成的数据的类型为:{}".format(np_array.dtype))# 生成1的数据np_array_ones = np.ones([2, 2], dtype=np.int32)print(np_array_ones)# 创建一个未初始化的数据,默认未初始化x = np.empty([3, 2], dtype=int)print(x)
。
结果:
1.使用当前的np.zeros(shape)和np.ones(shape)方法生成全是0或者全是1的指定形状的数组 。
2.通过np.empty(shape)生成空的数组 。
3.可以通过ndarray.dtype=dtype方式改变当前的ndarray的类型 。
# 从已有的数组中创建数据import numpy as npdefault_array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]default_tuple = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)print(type(default_tuple))copy_array = np.asarray(default_array) # 用于浅拷贝copy_tuple = np.asarray(default_tuple)print("asarray数组后的数据:{}".format(copy_array))print("asarray元组后的数据:{}".format(copy_tuple))deep_copy_array = np.copy(default_array)print("copy数组后的数据:{}".format(deep_copy_array))
1.这里使用np.asarray()方法生成的数组与原来的数组有关联,是浅拷贝 。
2.这里的np.copy()方法生成的另外一份备份数据,是深拷贝 。
# 通过固定范围生成数组,使用arange方式生成0 到 9之间的数据,默认生成的数据为当前的为范围的值,这里的步长默认就是1,结果中不包含10,这里是按照指定的步长进行迭代range_array = np.arange(0, 10, dtype=np.int32)print("range_array:{}".format(range_array))# 通过随机方式生成数组random_array = np.random.random((2, 2))print("使用随机方式生成数组:{}".format(random_array)) # 默认生成的数据为0到1之间的数据# 2 生成随机的整数random_array_int = np.random.randint(1, 10, (2, 2))print("生成随机整数:{}".format(random_array_int))# 在指定范围中生成15 个 1到 10之间的数,这是一个随机的数据,是等距离的,当要求的数据超过当前的范围的数据的时候默认就会随机生成一些数据listspace_array = np.linspace(1, 10, 15, dtype=np.int32) # 就是按照一定的等分进行划分为指定个需要的数据,这里的结果中包含10,相当于当前的等差数列一样print("listspace_array:{}".format(listspace_array))
。
结果:
1.当前的random方法就是随机生成指定区间的数据,可以指定类型 。
2.range就是相当于当前的python中的range方法,可以指定步长,是一个[a,b)这中数据 。
3.linspace用于在指定的范围中按照指定的方式生成数组,这个是等差数列,如果当前需要的数据大于这个范围就会出现随机生成的情况 。
# 生成一个等比的数列,这里面的2 表示生成的样本的个数为2 ,起始数据为1,结束数据为4,表示最小为3的1次方到当前的3的4次方equal_ratio_array = np.logspace(1, 4, 2, dtype=np.int32) # 这里的默认的底数为10 表示当前最小为10的一次方,最大为当前的10的4次方print("当前的等比数列的数据为:{}".format(equal_ratio_array))
当前的等比数列的数据为:[ 10 10000] 。
1.这个等比具有默认的底数为10,第一个表示10的1次方,第二个为生成数的最大次方为10的4次方,生成的数据2表示当前生成的等比数组的长度为2 。
2.可以设定当前的底数值,可以指定当前的类型 。
1.当前的numpy这个模块可以实现创建当前的数组,可以生成指定类型和指定形状的数组 。
2.通过numpy可以模拟需要的数据,产生数的方式很快! 。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我.
原文链接:https://www.cnblogs.com/chanyuli/p/11716951.html 。
最后此篇关于NumPy-ndarray 的数据类型用法说明的文章就讲到这里了,如果你想了解更多关于NumPy-ndarray 的数据类型用法说明的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我正在尝试编写一个相当多态的库。我遇到了一种更容易表现出来却很难说出来的情况。它看起来有点像这样: {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE
谁能解释一下这个表达式是如何工作的? type = type || 'any'; 这是否意味着如果类型未定义则使用“任意”? 最佳答案 如果 type 为“falsy”(即 false,或 undef
我有一个界面,在IAnimal.fs中, namespace Kingdom type IAnimal = abstract member Eat : Food -> unit 以及另一个成功
这个问题在这里已经有了答案: 关闭 10 年前。 Possible Duplicate: What is the difference between (type)value and type(va
在 C# 中,default(Nullable) 之间有区别吗? (或 default(long?) )和 default(long) ? Long只是一个例子,它可以是任何其他struct类型。 最
假设我有一个案例类: case class Foo(num: Int, str: String, bool: Boolean) 现在我还有一个简单的包装器: sealed trait Wrapper[
这个问题在这里已经有了答案: Create C# delegate type with ref parameter at runtime (1 个回答) 关闭 2 年前。 为了即时创建委托(dele
我正在尝试获取图像的 dct。一开始我遇到了错误 The function/feature is not implemented (Odd-size DCT's are not implemented
我正在尝试使用 AFNetworking 的 AFPropertyListRequestOperation,但是当我尝试下载它时,出现错误 预期的内容类型{( “应用程序/x-plist” )}, 得
我在下面收到错误。我知道这段代码的意思,但我不知道界面应该是什么样子: Element implicitly has an 'any' type because index expression is
我尝试将 SignalType 从 ReactiveCocoa 扩展为自定义 ErrorType,代码如下所示 enum MyError: ErrorType { // .. cases }
我无法在任何其他问题中找到答案。假设我有一个抽象父类(super class) Abstract0,它有两个子类 Concrete1 和 Concrete1。我希望能够在 Abstract0 中定义类
我想知道为什么这个索引没有用在 RANGE 类型中,而是用在 INDEX 中: 索引: CREATE INDEX myindex ON orders(order_date); 查询: EXPLAIN
我正在使用 RxJava,现在我尝试通过提供 lambda 来订阅可观察对象: observableProvider.stringForKey(CURRENT_DELETED_ID) .sub
我已经尝试了几乎所有解决问题的方法,其中包括。为 提供类型使用app.use(express.static('public'))还有更多,但我似乎无法为此找到解决方案。 index.js : imp
以下哪个 CSS 选择器更快? input[type="submit"] { /* styles */ } 或 [type="submit"] { /* styles */ } 只是好
我不知道这个设置有什么问题,我在 IDEA 中获得了所有注释(@Controller、@Repository、@Service),它在行号左侧显示 bean,然后转到该 bean。 这是错误: 14-
我听从了建议 registering java function as a callback in C function并且可以使用“简单”类型(例如整数和字符串)进行回调,例如: jstring j
有一些 java 类,加载到 Oracle 数据库(版本 11g)和 pl/sql 函数包装器: create or replace function getDataFromJava( in_uLis
我已经从 David Walsh 的 css 动画回调中获取代码并将其修改为 TypeScript。但是,我收到一个错误,我不知道为什么: interface IBrowserPrefix { [
我是一名优秀的程序员,十分优秀!