gpt4 book ai didi

C语言实现用户态线程库案例

转载 作者:qq735679552 更新时间:2022-09-28 22:32:09 25 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章C语言实现用户态线程库案例由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

轮子年年有人造,我们也来凑热闹,参考协程实现,大概有以下几种方法:

1)利用setjmp,longjmp 。

2)利用ucontext接口函数 。

3)汇编 。

(线程无非就是多了个抢占功能,由定时器触发,而非自愿让出运行权限) 。

因为我写的时候还没看到其他帖子,如果看到了,铁定会用最直观的ucontext接口写的(注意,在macOSX中已经标注为废除,头文件得换做sys/ucontext.h),结果就是我用了汇编来写,但是尽量不用汇编来写整个switch_to调度函数(这样有个明显的坏处,那就是用gas/nasm的标准汇编格式写的函数在macOSX下不能编译通过,这个与系统自带的编译工具有关),而用经量少的内嵌汇编来写。switch_to函数参考的是minix操作系统中任务切换函数实现的,用软件时钟器每隔1s发信号以激发switch_to函数切换任务。下面直接贴代码了,对外提供了类似pthread的接口(只有两个,分别是threadCreate和threadJoin)。现在的代码还非常的buggy,只能安全地支持在线程函数里头纯计算,其他的行为非常可能引发bus error和segmentation fault。(要更加严谨地研究用户态线程库,请去看gnu pth的实现代码) 。

 thread.h 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#pragma once
#include < stdio.h >
#include < stdlib.h >
#include < unistd.h >
#include < string.h >
#include < signal.h >
#include < assert.h >
#include < time.h >
 
#define JMP(r)  asm volatile \
         (  "pushl %3\n\t" \
           "popfd\n\t" \
           "movl %2, %%ebp\n\t" \
           "movl %0, %%esp\n\t" \
           "jmp *%1\n\t" \
           : \
           : "m"(r._esp),"m"(r._eip),"m"(r._ebp),"m"(r._eflags) \
           : \
         )
 
#define SAVE()         asm volatile \
               (  "movl %%eax, %0\n\t" \
                 "movl %%ecx, %1\n\t" \
                 "movl %%edx, %2\n\t" \
                 "movl %%ebx, %3\n\t" \
                   "movl %%esp, %4\n\t" \
                 "movl %%ebp, %5\n\t" \
                 "movl %%esi, %6\n\t" \
                 "movl %%edi, %7\n\t" \
                 "pushfd\n\t" \
                 "movl (%%esp), %%eax\n\t" \
                 "movl %%eax, %8\n\t" \
                 "popfd\n\t" \
                 : "=m"(_eax),"=m"(_ecx),"=m"(_edx),"=m"(_ebx) \
                 ,"=m"(_esp),"=m"(_ebp) \
                 , "=m"(_esi),"=m"(_edi),"=m"(_eflags) \
                 : \
                 : "%eax" \
               )
 
#define RESTORE(r)     asm volatile \
               (  "movl %0, %%eax\n\t" \
                 "movl %1, %%ecx\n\t" \
                 "movl %1, %%edx\n\t" \
                 "movl %3, %%ebx\n\t" \
                 "movl %4, %%esi\n\t" \
                 "movl %5, %%edi\n\t" \
                 : \
                 :"m"(r._eax),"m"(r._ecx),"m"(r._edx),"m"(r._ebx) \
                 , "m"(r._esi),"m"(r._edi) \
               )
 
typedef void Func(int);
 
/* __timer struct is the real Timer struct we use
  * id is unique to each timer
  * intersec is the inteval seconds to each signal forwarding the this Timer
  * sigactor is the handler for this Timer
  * next is a internal member used for linked list
  */
struct __timer
{
   void *next;
   unsigned int sec;
   unsigned int intersec;
   int id;
   Func *sigactor;
};
 
/* struct alarm is ugly for the compatibility with early struct.
  * I should have used unnamed member instead of __inner.
  */
typedef struct alarm *Timer;
struct alarm
{
   union{
     struct
     {
       Timer next;
       unsigned int sec;
     };
     struct __timer __inner;
   };
};
 
typedef struct list *Header;
 
struct list
{
   Timer head;
};
 
typedef struct __thread_table_regs Regs;
struct __thread_table_regs
{
   int _edi;
   int _esi;
   int _ebp;
   int _esp;
   int _ebx;
   int _edx;
   int _ecx;
   int _eax;
   int _eip;
   int _eflags;
};
 
typedef struct __ez_thread Thread_t;
struct __ez_thread
{
   Regs regs;
   int tid;
   sigset_t sigmask;
   unsigned int priority;
   int tick;
   int state;
   int errno;
   unsigned int stacktop;
   unsigned int stacksize;
   void *stack;
   void *retval;
   volatile int __reenter;
};
 
typedef struct __pnode pNode;
struct __pnode
{
   pNode *next;
   pNode *prev;
   Thread_t *data;
};
 
typedef struct __loopcursor Cursor;
struct __loopcursor
{
   int total;
   pNode *current;
};
typedef struct __stack *Stack_t;
struct __stack
{
   int __pad[4096];
};
 
void switch_to(int);
 
extern Header hdr_ptr;
extern Cursor live;
extern Cursor dead;
extern Thread_t pmain;

 thread.c 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/* MIT License
 
Copyright (c) 2017 Yuandong-Chen
 
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
 
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. */
 
#include "thread.h"
/************************* Alarm facility *************************/
 
struct list linkedlist;
Header hdr_ptr = &linkedlist;
 
 
Timer mallocTimer(int id, Func *actor,unsigned int sec, unsigned int interval)
{
   Timer ret = (Timer)malloc(sizeof(struct alarm));
   assert(ret);
   ret->__inner.id = id;
   ret->__inner.sigactor = actor;
   ret->__inner.intersec = interval;
   ret->sec = sec;
   return ret;
}
 
/* find Timer in linked list which id is id.
  * return: return NULL if not found, -1 if it's header link,
  * otherwise prev which is the previous Timer member to this Timer
  */
 
Timer findTimerPrev(Header h, int id)
{
   assert(h);
   if(h->head == NULL)
     return NULL;
 
   Timer t = h->head;
   Timer prev = NULL;
 
   while(t)
   {
     if(t->__inner.id == id){
       if(prev == NULL)
         return (Timer)-1;
       else
         return prev;
     }
     prev = t;
     t = t->next;
   }
 
   return NULL;
}
 
/* delete Timer in linked list.
  * return: nothing, we ensure this t is deleted in the linked list.
  */
 
void delTimer(Header h, Timer t)
{
   assert(h);
   assert(t);
   Timer prevtodel = findTimerPrev(h, t->__inner.id);
   unsigned int base = 0;
 
   if(prevtodel)
   {
     if(prevtodel == (Timer)-1){
 
       unsigned int res = (h->head)->sec;
       if(res != 0)
       {
         base = res;
       }
       else
       {
         kill(getpid(),SIGALRM);
         return;
       }
       h->head = (h->head)->next;
       Timer tmp = (h->head);
 
       while(tmp){
         tmp->sec += base;
         tmp = tmp->next;
       }
       return;
     }
     else
     {
      
       base = (prevtodel->next)->sec;
       prevtodel->next = (prevtodel->next)->next;
       Timer tmp = (prevtodel->next);
      
       while(tmp){
         tmp->sec += base;
         tmp = tmp->next;
       }
       return;
     }
   }
 
   return;
}
 
/* append Timer in appropriate place in linked list.
  * the appropriate place means all timers in linked list are arranged
  * according their next alarm seconds.
  * The algorithm we use here is that the real left alarm seconds for this Timer
  * is the sum of all the sec member in Timer in linked list prev to this Timer
  * plus its sec member. For example, we add 3 Timers to the linked list,
  * whose sec are 4, 3, 2 respectively. Then the linked list looks like:
  * 2 (real sec = 2) --> 1 (real sec = 2+1 = 3) --> 1 (real sec = 2+1+1 = 4)
  * The advantage is obviously, we dont need to remember how many seconds passed.
  * We always fetch the header to respond the alarm signal and set next alarm sec
  * as the next timer in the linked list. (The real situation is a little bit more
  * complex, for example if upcoming timers' sec equals 0, we need to call their
  * handler right away all together in a certain sequence. If its intersec is not
  * zero, we need to append it to the linked list again as quick as possible)
  * note: delTimer also address this problem. If we delete any Timer, we need to
  * recalculate the secs after this timer in the linked list.(simply to add sec to
  * the next timer and delete this timer node)
  * return: only 0 if success, otherwise the hole process failed.
  */
 
int appendTimer(Header h, Timer t)
{
   assert(h);
   assert(t);
   delTimer(h, t);
 
   if(h->head == NULL)
   {
     h->head = t;
     return 0;
   }
 
   Timer tmp = h->head;
   Timer prev = NULL;
   unsigned int prevbase = 0;
   unsigned int base = 0;
 
   while(tmp)
   {
     prevbase = base;
     base += tmp->sec;
     if(t->sec < base ){
       break;
     }
     else{
       prev = tmp ;
       tmp = tmp->next;
     }
      
   }
 
   if(prev == NULL)
   {
     (h->head)->sec -= t->sec;
     t->next = h->head;
     h->head = t;
     return 0;
   }
 
   if(tmp == NULL)
     t->sec -=base;
   else
     t->sec -=prevbase;
 
   prev->next = t;
   t->next = tmp;
   if(tmp)
     tmp->sec -= t->sec;
 
   return 0;
}
 
/* pop header timer in linked list.
  * return: its hander
  */
 
Func* popTimer(Header h)
{
   assert(h);
   if(h->head == NULL)
     return (Func *)-1;
   Func *ret = (h->head)->__inner.sigactor;
   Timer todel = h->head;
   h->head = (h->head)->next;
   // if its intersec greater than 0, we append it right away to the linked list
   if(todel->__inner.intersec > 0)
   {
     todel->sec = todel->__inner.intersec;
     appendTimer(h, todel);
   }
   return ret;
}
 
void printList(Header h)
{
   assert(h);
   if(h->head == NULL)
     return;
 
   Timer tmp = h->head;
 
   while(tmp)
   {
     printf("timer[%d] = %u saved %u\n", tmp->__inner.id, tmp->sec, tmp->__inner.intersec);
     tmp = tmp->next;
   }
}
 
/* it's the real signal handler responding to every SIGALRM.
  */
void sig_alarm_internal(int signo)
{
   void funcWrapper(int signo, Func *func);
 
   if(hdr_ptr->head == NULL)
     return;
 
   Func *recv;
   if((recv = popTimer(hdr_ptr)) == (Func *)-1){
     funcWrapper(SIGALRM, recv);
   }
   else
   {
     // signal ourself if next timer's sec = 0
     if(hdr_ptr->head){
       ((hdr_ptr->head)->sec > 0?alarm((hdr_ptr->head)->sec):kill(getpid(), SIGALRM));
     }
     funcWrapper(SIGALRM, recv);
   }
}
 
/* Alarm function simulates native alarm function.
  * what if SIGALRM arrives when process is running in Alarm?
  * we just block the signal since there is no slow function in Alarm,
  * sig_alarm_internal will for sure address the signal very soon.
  */
 
unsigned int Alarm(Header h, Timer mtimer)
{
   sigset_t mask;
   sigset_t old;
   sigemptyset(&mask);
   sigaddset(&mask, SIGALRM);
   sigprocmask(SIG_BLOCK, &mask, &old);
  
   unsigned int res = 0;
   Timer t;
 
   if((t = findTimerPrev(h, mtimer->__inner.id)) == NULL)
     goto LL;
 
   t = h->head;
   while(t)
   {
     res += t->sec; // it's not precise, we should use alarm(0) for the first sec.
             // However, its simple enough to implement.
     if(t->__inner.id == mtimer->__inner.id)
       break;
 
     t = t->next;
   }
LL:
   if(mtimer->sec == 0)
   {
     delTimer(h, mtimer);
     sigprocmask(SIG_SETMASK, &old, NULL);
     return res;
   }
   
   appendTimer(h, mtimer);
   if(mtimer->__inner.id == (h->head)->__inner.id)
     ((h->head)->sec > 0?alarm((h->head)->sec):kill(getpid(), SIGALRM));
   sigprocmask(SIG_SETMASK, &old, NULL);
   return res;
}
 
void initTimer()
{
   struct sigaction act;
   act.sa_handler = sig_alarm_internal;
   act.sa_flags = SA_RESTART|SA_NODEFER;
   sigemptyset(&act.sa_mask);
   sigaction(SIGALRM, &act, NULL);
}
 
void funcWrapper(int signo, Func *func)
{
   sigset_t mask;
   sigset_t old;
   sigemptyset(&mask);
   sigaddset(&mask, SIGALRM);
   sigprocmask(SIG_UNBLOCK, &mask, &old);
   func(signo);
   sigprocmask(SIG_SETMASK, &old, NULL);
}
 
/************************* Thread facility *************************/
 
 
Cursor live;
Cursor dead;
Thread_t pmain;
 
void initCursor(Cursor *cur)
{
   cur->total = 0;
   cur->current = NULL;
}
 
Thread_t *findThread(Cursor *cur, int tid)
{
   sigset_t mask,old;
   sigemptyset(&mask);
   sigaddset(&mask, SIGALRM);
   sigprocmask(SIG_BLOCK, &mask, &old);
   int counter = cur->total;
   if(counter == 0){
     sigprocmask(SIG_SETMASK, &old, NULL);
     return NULL;
   }
    
 
   int i;
   pNode *tmp = cur->current;
   for (int i = 0; i < counter ; ++i)
   {
     if((tmp->data)->tid == tid){
       sigprocmask(SIG_SETMASK, &old, NULL);
       return tmp->data;
     }
     tmp = tmp->next;
   }
   sigprocmask(SIG_SETMASK, &old, NULL);
   return NULL;
}
 
int appendThread(Cursor *cur, Thread_t *pth)
{
   sigset_t mask,old;
   sigemptyset(&mask);
   sigaddset(&mask, SIGALRM);
   sigprocmask(SIG_BLOCK, &mask, &old);
   if(cur->total == 0)
   {
     //note this never freed for simple implementation
     cur->current = (pNode *)malloc(sizeof(pNode));
     assert(cur->current);
     (cur->current)->data = pth;
     (cur->current)->prev = cur->current;
     (cur->current)->next = cur->current;
     cur->total++;
     sigprocmask(SIG_SETMASK, &old, NULL);
     return 0;
   }
   else
   {
     #define MAXTHREADS 5
     if(cur->total > MAXTHREADS)
     {
       assert((cur->total == MAXTHREADS));
       sigprocmask(SIG_SETMASK, &old, NULL);
       return -1;
     }
     //freed at threadJoin for simple implementation
     pNode *tmp = malloc(sizeof(pNode));
     assert(tmp);
     tmp->data = pth;
     tmp->prev = cur->current;
     tmp->next = (cur->current)->next;
     ((cur->current)->next)->prev = tmp;
     (cur->current)->next = tmp;
     cur->total++;
     sigprocmask(SIG_SETMASK, &old, NULL);
     return 0;
   }
}
 
pNode *deleteThread(Cursor *cur, int tid)
{
   sigset_t mask,old;
   sigemptyset(&mask);
   sigaddset(&mask, SIGALRM);
   sigprocmask(SIG_BLOCK, &mask, &old);
 
   int counter = cur->total;
   int i;
   pNode *tmp = cur->current;
   for (int i = 0; i < counter ; ++i)
   {
     if((tmp->data)->tid == tid){
       (tmp->prev)->next = tmp->next;
       (tmp->next)->prev = tmp->prev;
       if(tmp == cur->current)
       {
         cur->current = cur->current->next;
       }
       //free(tmp);
       cur->total--;
       assert(cur->total);
       sigprocmask(SIG_SETMASK, &old, NULL);
       return tmp;
     }
     tmp = tmp->next;
   }
   sigprocmask(SIG_SETMASK, &old, NULL);
   return NULL;
}
 
void printThread(Thread_t *pth)
{
   printf("pth tid: %d\n", pth->tid);
   printf("pth stack top: %x\n", pth->stacktop);
   printf("pth stack size: %u\n", pth->stacksize);
   printf("pth state: %d\n", pth->state);
   printf("pth errno: %d\n", pth->errno);
   printf("pth retval: %p\n", pth->retval);
   printf("pth sigmask: %u\n", pth->sigmask);
   printf("pth priority: %d\n", pth->priority);
   printf("pth tick: %d\n", pth->tick);
   printf("EFLAGS: %x\t", pth->regs._eflags);
   printf("EIP: %x\t", pth->regs._eip);
   printf("EAX: %x\t", pth->regs._eax);
   printf("ECX: %x\n", pth->regs._ecx);
   printf("EDX: %x\t", pth->regs._edx);
   printf("EBX: %x\t", pth->regs._ebx);
   printf("ESP: %x\t", pth->regs._esp);
   printf("EBP: %x\n", pth->regs._ebp);
   printf("ESI: %x\t", pth->regs._esi);
   printf("EDI: %x\n", pth->regs._edi);
 
}
 
void printLoop(Cursor *cur)
{
   int count = 0;
   pNode *tmp = cur->current;
   assert(tmp);
   do{
     printThread(tmp->data);
     tmp = tmp->next;
     count ++;
   }while(tmp != cur->current);
   printf("real total: %d\n", count);
   printf("total record:%d\n", cur->total);
   assert(count == cur->total);
}
 
int fetchTID()
{
   static int tid;
   return ++tid;
}
 
void real_entry(Thread_t *pth, void *(*start_rtn)(void *), void* args)
{
   //printf("in real entry: %p\n", start_rtn);
  
   pth->retval = (*start_rtn)(args);
   //deleteThread(&live, pth->tid);
   /* some clean job here */
   //free(pth->stack);
   //pth->stack = NULL;
   //pth->stacktop = 0;
   //pth->stacksize = 0;
   #define DETACHED 1
   deleteThread(&live, pth->tid);
   appendThread(&dead, pth);
 
   if(pth->state == DETACHED)
     threadJoin(pth, NULL);
 
   switch_to(-1);
}
 
int threadCreat(Thread_t **pth, void *(*start_rtn)(void *), void *arg)
{
   sigset_t mask,old;
   sigemptyset(&mask);
   sigaddset(&mask, SIGALRM);
   sigprocmask(SIG_BLOCK, &mask, &old);
   //freed at threadJoin for simple implementation
   *pth = malloc(sizeof(Thread_t));
   #define PTHREAD_STACK_MIN 4096
   //freed at threadJoin for simple implementation
   (*pth)->stack = malloc(PTHREAD_STACK_MIN);
   assert((*pth)->stack);
   (*pth)->stacktop = (((int)(*pth)->stack + PTHREAD_STACK_MIN)&(0xfffff000));
   (*pth)->stacksize = PTHREAD_STACK_MIN - (((int)(*pth)->stack + PTHREAD_STACK_MIN) - (*pth)->stacktop);
   (*pth)->state = 0; // 0 JOINABLE 1 DETACHED
   (*pth)->priority = 1; //one seconds
   (*pth)->tick = (*pth)->priority;
   (*pth)->tid = fetchTID();
   sigprocmask(0,NULL,&((*pth)->sigmask));
   /* set params */
   void *dest = (*pth)->stacktop - 12;
   memcpy(dest, pth, 4);
   dest += 4;
   memcpy(dest, &start_rtn, 4);
   dest += 4;
   memcpy(dest, &arg, 4);
   (*pth)->regs._eip = &real_entry;
   (*pth)->regs._esp = (*pth)->stacktop - 16;
   (*pth)->regs._edi = 0;
   (*pth)->regs._esi = 0;
   (*pth)->regs._ebp = 0;
   (*pth)->regs._eax = 0;
   (*pth)->regs._ebx = 0;
   (*pth)->regs._ecx = 0;
   (*pth)->regs._edx = 0;
   (*pth)->regs._eflags = 0;
   appendThread(&live, (*pth));
   sigprocmask(SIG_SETMASK, &old, NULL);
   return 0;
}
 
int threadJoin(Thread_t *pth, void **rval_ptr)
{
 
   sigset_t mask,old;
   sigemptyset(&mask);
   sigaddset(&mask, SIGALRM);
   sigprocmask(SIG_BLOCK, &mask, &old);
   Thread_t *find1, *find2;
   find1 = findThread(&live, pth->tid);
   find2 = findThread(&dead, pth->tid);
  
 
   if((find1 == NULL)&&(find2 == NULL)){
     sigprocmask(SIG_SETMASK, &old, NULL);
     return -1;
   }
 
   if(find2){
     if(rval_ptr != NULL)
       *rval_ptr = find2->retval;
 
     sigprocmask(SIG_SETMASK, &old, NULL);
     return 0;
   }
   sigprocmask(SIG_SETMASK, &old, NULL);
   while(1)
   {
     if((find2 = findThread(&dead, pth->tid))!= NULL){
       if(rval_ptr!= NULL)
         *rval_ptr = find2->retval;
 
       pNode *tmp = deleteThread(&dead, pth->tid);
       free(tmp);
       free((Stack_t)find2->stack);
       free(find2);
       return 0;
     }
   }
   return -1;
}
 
void init()
{
   initTimer();
   initCursor(&live);
   initCursor(&dead);
   appendThread(&live, &pmain);
   Alarm(hdr_ptr,mallocTimer(1, switch_to, 1, 1));
}
 
void switch_to(int signo)
{
   sigset_t mask,old;
   sigemptyset(&mask);
   sigaddset(&mask, SIGALRM);
   sigprocmask(SIG_BLOCK, &mask, &old);
   Regs regs;
   //printf("");
   if(signo == -1)
   {
     regs = live.current->data->regs;
     sigprocmask(SIG_SETMASK, &old, NULL);
     JMP(regs);
     assert(0);
   }
  
   int _edi;
   int _esi;
   int _ebp;
   int _esp;
   int _ebx;
   int _edx;
   int _ecx;
   int _eax;
   int _eip = &&_REENTERPOINT;
   int _eflags;
   live.current->data->__reenter = 0;
   /* save current context */
   SAVE();
 
   /* save context in current thread */
   live.current->data->regs._eflags = _eflags;
   live.current->data->regs._eip = _eip;
   live.current->data->regs._eax = _eax;
   live.current->data->regs._ecx = _ecx;
   live.current->data->regs._edx = _edx;
   live.current->data->regs._ebx = _ebx;
   live.current->data->regs._esp = _esp;
   live.current->data->regs._ebp = _ebp;
   live.current->data->regs._esi = _esi;
   live.current->data->regs._edi = _edi;
 
   if(!live.current->data->__reenter)
   {
     goto _END;
   }
 
_REENTERPOINT:
   regs = live.current->data->regs;
 
   if(live.current->data->__reenter){
     live.current->data->__reenter = 0;
     sigprocmask(SIG_SETMASK, &old, NULL);
     return;
   }
 
_END:
   live.current->data->__reenter = 1;
   regs = live.current->next->data->regs;
   live.current = live.current->next;
   sigprocmask(SIG_SETMASK, &old, NULL);
   JMP(regs);
   assert(0);
}
 
/************************* Test *************************/
/**
  * Note: The implementation is really bugy, right now only support compute in thread.
  * Even standard I/O in the thread will cause I/O bus error or segmentation error because
  * all pthread-reentrant function is not guaranteed in our thread model.
  * (pthread_mutex_t cannot block thread in our model cause we modify eip directly)
  */
void *sum1tod(void *d)
{
   int i, k, j=0;
 
   for (i = 0; i <= (int)d; ++i)
   {
       /* code */
       j+=i;  
   }
   return ((void *)j);
}
 
int main(int argc, char const *argv[])
{
   int res = 0;
   int i;
   init();
   Thread_t *tid1, *tid2;
   int *res1, *res2;
   threadCreat(&tid1, sum1tod, 100);
   threadCreat(&tid2, sum1tod, 100);
   for (i = 0; i <= 100; ++i){
     res+=i;
   }
 
   threadJoin(tid1, &res1);
   threadJoin(tid2, &res2);
   printf("parallel compute: %d = 5050 * 3\n", (int)res1+(int)res2+(int)res);
   return 0;
}

以上这篇C语言实现用户态线程库案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我.

最后此篇关于C语言实现用户态线程库案例的文章就讲到这里了,如果你想了解更多关于C语言实现用户态线程库案例的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com