gpt4 book ai didi

Python入门之使用pandas分析excel数据

转载 作者:qq735679552 更新时间:2022-09-27 22:32:09 27 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章Python入门之使用pandas分析excel数据由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

1.问题

在python中,读写excel数据方法很多,比如xlrd、xlwt和openpyxl,实际上限制比较多,不是很方便。比如openpyxl也不支持csv格式。有没有更好的方法?

2.方案

更好的方法可以使用pandas,虽然pandas不是专门处理excel数据,但处理excel数据确实很方便.

本文使用excel的数据来自网络,数据内容如下:

Python入门之使用pandas分析excel数据

2.1.安装

使用pip进行安装.

?
1
pip3 install pandas

导入pandas:

?
1
import pandas as pd

下文使用pd进行pandas的操作.

2.2.读写文件

读取文件,比如excel,csv文件 。

?
1
2
3
4
5
# df是pandas.core.frame.DataFrame类型
df = pd.read_excel( './data/2020-suv.xlsx' )
 
# read_csv可以指定分割符,编码方式等
df2 = pd.read_csv( './data/2020-suv.csv' )

写入文件:

?
1
2
df.to_excel( './data/2020-suv-new.xlsx' )
df.to_csv( './data/2020-suv-new.csv' )

2.3.数据操作

?
1
2
3
4
5
6
7
8
all_cols = df.columns
print (all_cols)
 
# 输出,df.columns并非list类型
Index([ '销量排名' , '车系' , '官方价' , '从属品牌' , '1-12月销量' ], dtype = 'object' )
 
# df.columns并非list类型,可以转化list
cols = list (df.columns)

获取列数据 。

?
1
2
col_data = df[u '车系' ]
mul_col_data = df[ [u '车系' , u '1-12月销量' ] ]

获取行数据 。

?
1
row_data = df.iloc[row_index]

获取所有行数据 。

?
1
all_data = df.values

切片获取多行数据 。

?
1
mul_row_data = df.iloc[ 2 : 4 ]

获取单元个数据 。

?
1
cell_data = df.iloc[row_index][col_index]

2.4.数据筛选

Excel数据筛选比较实用,用pandas同样可以,并且筛选代码保存后,下次可以直接使用.

某个字段包含指定值 。

?
1
2
3
4
5
6
7
8
9
10
11
12
# 包含一个值,na表示是否需要填充,case表示是否区分大小写,更强大的是contains还支持正则表达式
sub_df = df[ df[col_name]. str .contains( 'key1' , na = False , case = False ) ]
 
# 包含多个值,多次调用即可
sub_df1 = df[ df[col_name]. str .contains( 'key1' , na = False , case = False ) ]
sub_df2 = sub_df1[ sub_df1[col_name]. str .contains( 'key2' , na = False , case = False ) ]
 
# 包含多个值(或)
sub_df = df[ df[col_name]. str .contains( 'key1|key2|key3' , na = False , case = False ) ]
 
# 不包含,也就是非的过滤
sub_df = df[ ~df[col_name]. str .contains( 'key1' , na = False , case = False ) ]

上述操作,都假设字段类型是字符串类型,不然会抛异常。可以通过以下的方法,可以判断字段是否是字符类型:

?
1
2
3
4
5
6
7
8
pd.api.types.is_string_dtype(df[u '车系' ])
 
# 其他类型也有类似的函数,可以用dir查看有哪些类型判断
print ( dir (pd.api.types))
 
# 可以通过dtypes查看字段的类型
pd.dtypes
pd[u '1-12月销量' ].dtypes

条件过滤 。

?
1
2
3
4
5
# 大于
df[ df[ '1-12月销量' ] > 50000 ] .values
 
# 相等
df[ df[ '1-12月销量' ] = = 50000 ] .values

2.5.数据写入

添加一行数据:

?
1
2
# 插在最后,row_datas是list
df.loc[ len (df.index)] = row_datas

插入一列数据 。

?
1
2
# 在指定列前面插上一列数据
df.insert( col_index, col_name, col_datas, True )

更新某个单元值 。

?
1
df.iloc[row][col] = u 'new-data'

2.6.数据删除

删除一列 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
df2 = df.drop( '官方价' , axis = 1 , inplace = False )
print (df2)
 
# 输出
销量排名           车系   从属品牌  1 - 12 月销量
0       1         哈弗H6     哈弗   376864
1       2       本田CR - V     本田   249983
2       3           博越   吉利汽车   240811
3       4          途观L     大众   178574
4       5  长安CS75 PLUS   长安汽车   266824
..    ...          ...    ...      ...
282   283      北汽新能源EX  北汽新能源      879
283   284        奔腾X40     奔腾    20412
284   285    标致 2008 新能源     标致       37
285   286       猎豹CS10   猎豹汽车       14
286   287         森雅R7     一汽        1
 
[ 287 rows x 4 columns]

删除一行 。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
df3 = df.drop( 2 , axis = 0 , inplace = False )
print (df3)
 
# 输出
      销量排名           车系           官方价   从属品牌  1 - 12 月销量
0       1         哈弗H6   9.80 - 15.49 万     哈弗   376864
1       2       本田CR - 16.98 - 27.68 万     本田   249983
3       4          途观L  21.58 - 28.58 万     大众   178574
4       5  长安CS75 PLUS  10.69 - 15.49 万   长安汽车   266824
5       6       本田XR - 12.79 - 17.59 万     本田   168272
..    ...          ...           ...    ...      ...
282   283      北汽新能源EX  18.39 - 20.29 万  北汽新能源      879
283   284        奔腾X40          暂无报价     奔腾    20412
284   285    标致 2008 新能源  16.60 - 18.80 万     标致       37
285   286       猎豹CS10   7.98 - 11.98 万   猎豹汽车       14
286   287         森雅R7   6.69 - 10.69 万     一汽        1
 
[ 286 rows x 5 columns]

3.讨论

pandas库用于大数据分析和AI,库本身比较复杂,很多功能未必用得上,日常使用可以简单的封装,能够读、写、搜索excel或csv数据,pandas比起专门操作excel的库要好用得多,简单封装一下即可。详细的使用说明,可以参见pandas官方文档.

https://pandas.pydata.org/docs/user_guide/index.html#user-guide 。

总结

到此这篇关于Python入门学习之使用pandas分析excel数据的文章就介绍到这了,更多相关Python用pandas分析excel内容请搜索我以前的文章或继续浏览下面的相关文章希望大家以后多多支持我! 。

原文链接:https://blog.csdn.net/KiteRunner/article/details/116571267 。

最后此篇关于Python入门之使用pandas分析excel数据的文章就讲到这里了,如果你想了解更多关于Python入门之使用pandas分析excel数据的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com