gpt4 book ai didi

pytorch 多个反向传播操作

转载 作者:qq735679552 更新时间:2022-09-27 22:32:09 25 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章pytorch 多个反向传播操作由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

之前我的一篇文章pytorch 计算图以及backward,讲了一些pytorch中基本的反向传播,理清了梯度是如何计算以及下降的,建议先看懂那个,然后再看这个.

从一个错误说起:

RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed 。

在深度学习中,有些场景需要进行两次反向,比如Gan网络,需要对D进行一次,还要对G进行一次,很多人都会遇到上面这个错误,这个错误的意思就是尝试对一个计算图进行第二次反向,但是计算图已经释放了.

其实看简单点和我们之前的backward一样,当图进行了一次梯度更新,就会把一些梯度的缓存给清空,为了避免下次叠加,但在Gan这种情形下,我们必须要二次更新,那怎么办呢.

有两种方案:

方案一:

这是网上大多数给出的解决方案,在第一次反向时候加入一个l2.backward(),这样就能避免释放掉了.

方案二:

上面的方案虽然解决了问题,但是并不优美,因为我们用Gan的时候,D和G两者的更新并无联系,二者的联系仅仅是D里面用到了G的输出,而这个输出一般我们都是直接拿来用的,而问题就出现在这里.

下面给一个模拟:

data = torch.randn(4,10)model1 = torch.nn.Linear(10,2)model2 = torch.nn.Linear(2,2)optimizer1 = torch.optim.Adam(model1.parameters(), lr=0.001,betas=(0.5, 0.999))optimizer2 = torch.optim.Adam(model2.parameters(), lr=0.001,betas=(0.5, 0.999))loss = torch.nn.CrossEntropyLoss()data = torch.randn(4,10)label = torch.Tensor([0,1,1,0]).long()for i in range(20):    a = model1(data)    b = model2(a)    l1 = loss(a,label)    l2 = loss(b,label)    optimizer2.zero_grad()    l2.backward()    optimizer2.step()    optimizer1.zero_grad()    l1.backward()    optimizer1.step()

上面定义了两个模型,而model2的输入是model1的输出,而更新的时候,二者都是各自更新自己的参数,并无联系,但是上面的代码会报一个RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed 这样的错,解决方案可以是l2.backward(retain_graph=True).

除此之外我们还可以是b = model2(a.detach()),这个就优美一点,a.detach()和a的区别你可以打印出来看一下,其实a.detach()是没有梯度的,所以相当于一个单纯的数字,和model1就脱离了联系,这样model2和model1就是完全分离开来的两个图,但是如果用的是a则model2和model1则仍然公用一个图,所以导致了错误.

可以看下面示意图(这个是我猜测,帮助理解):

pytorch 多个反向传播操作

左边相当于直接用a而右边则用a.detach(),类似的在Gan网络里面D的输入可以改为G的输出y_fake.detach().

但有一点需要注意的是,两个网络一定没有需要共同更新的 ,假如上面的optimizer2 = torch.optim.Adam(itertools.chain(model1.parameters(),model2.parameters()), lr=0.001,betas=(0.5, 0.999)),则还是用retain_graph=True保险,因为.detach则model2反向不会传播到model1,导致不对model1里面参数更新.

补充:聊聊Focal Loss及其反向传播 。

我们都知道,当前的目标检测(Objece Detection)算法主要分为两大类:two-stage detector和one-stage detector。two-stage detector主要包括rcnn、fast-rcnn、faster-rcnn和rfcn等,one-stage detector主要包括yolo和ssd等,前者精度高但检测速度较慢,后者精度低些但速度很快.

对于two-stage detector而言,通常先由RPN生成proposals,再由RCNN对proposals进行Classifcation和Bounding Box Regression。这样做的一个好处是有利于样本和模型之间的feature alignment,从而使Classification和Bounding Box Regression更容易些;此外,RPN和RCNN中存在正负样本不均衡的问题,RPN直接限制正负样本的比例为1:1,对于固定的rpn_batch_size,正样本不足的情况下才用负样本来填充,RCNN则是直接限制了正负样本的比例为1:3或者采用OHEM.

对于one-stage detector而言,样本和模型之间的feature alignment只能通过reception field来实现,且直接通过回归方式进行预测,存在这严重的正负样本数据不均衡(1:1000)的问题,负样本的比例过高,占据了loss的绝大部分,且大多数是容易分类的,这使得模型的训练朝着不希望的方向前进。作者认为这种数据的严重不均衡是造成one-stage detector精度低的主要原因,因此提出Focal Loss来解决这一问题.

通过人工控制正负样本比例或者OHEM能够一定程度解决数据不均衡问题,但这两种方法都比较粗暴,采用这种“一刀切”的方式有可能把一些hard examples忽略掉。因此,作者提出了一种新的损失函数Focal Loss,不忽略任何样本,同时又能让模型训练时更加专注在hard examples上。简单说明下Focal loss的原理.

Focal Loss是在标准的交叉熵损失的基础上改进而来。以二分类为例,标准的交叉熵损失函数为 。

pytorch 多个反向传播操作

针对类别不均衡,针对对不同类别对loss的贡献进行控制即可,也就是加一个控制权重αt,那么改进后的balanced cross entropy loss为 。

pytorch 多个反向传播操作

但是balanced cross entropy loss没办法让训练时专注在hard examples上。实际上,样本的正确分类概率pt越大,那么往往说明这个样本越易分。所以,最终的Focal Loss为 。

pytorch 多个反向传播操作

Focal Loss存在这两个超参数(hyperparameter),不同的αt和γ,对于的loss如Figure 1所示。从Figure 4, 我们可以看到γ的变化对正(forground)样本的累积误差的影响并不大,但是对于负(background)样本的累积误差的影响还是很大的(γ=2时,将近99%的background样本的损失都非常小).

pytorch 多个反向传播操作

pytorch 多个反向传播操作

接下来看下实验结果,为了验证Focal Loss,作者提出了一种新的one-stage detector架构RetinaNet,采用的是resnet_fpn,同时scales增加到15个,如Figure 3所示 。

pytorch 多个反向传播操作

Table 1给出了RetinaNet和Focal Loss的一些实验结果,从中我们看出增加α-类别均衡,AP提高了0.9,再增加了γ控制,AP达到了37.8.Focal Local相比于OHEM,AP提高了3.2。从Table 2可以看出,增加训练时间并采用scale jitter,AP最终那达到39.1.

pytorch 多个反向传播操作

pytorch 多个反向传播操作

Focal Loss的原理分析和实验结果至此结束了,那么,我们接下来看下Focal Loss的反向传播。首先给出Softmax Activation的反向梯度传播公式,为 。

pytorch 多个反向传播操作

有了Softmax Activation的反向梯度传播公式,根据链式法则,Focal Loss的反向梯度传播公式为 。

pytorch 多个反向传播操作

总结:

Focal Loss主要用于解决数据不均衡问题,可以看做是OHEM算法的延伸。作者是将Focal Loss用于one-stage detector,但实际上这种解决数据不均衡的方法对于two-stage detector来讲同样有效.

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我。如有错误或未考虑完全的地方,望不吝赐教.

原文链接:https://blog.csdn.net/qq_28888837/article/details/103651695 。

最后此篇关于pytorch 多个反向传播操作的文章就讲到这里了,如果你想了解更多关于pytorch 多个反向传播操作的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com