gpt4 book ai didi

Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程

转载 作者:qq735679552 更新时间:2022-09-29 22:32:09 29 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

rabbitmq中文翻译的话,主要还是mq字母上:Message Queue,即消息队列的意思。前面还有个rabbit单词,就是兔子的意思,和python语言叫python一样,老外还是蛮幽默的。rabbitmq服务类似于mysql、apache服务,只是提供的功能不一样。rabbimq是用来提供发送消息的服务,可以用在不同的应用程序之间进行通信.

安装rabbitmq 先来安装下rabbitmq,在ubuntu 12.04下可以直接通过apt-get安装:

sudo apt-get install rabbitmq-server

安装好后,rabbitmq服务就已经启动好了。接下来看下python编写Hello World!的实例。实例的内容就是从send.py发送“Hello World!”到rabbitmq,receive.py从rabbitmq接收send.py发送的信息.

Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程

其中P表示produce,生产者的意思,也可以称为发送者,实例中表现为send.py;C表示consumer,消费者的意思,也可以称为接收者,实例中表现为receive.py;中间红色的表示队列的意思,实例中表现为hello队列.

python使用rabbitmq服务,可以使用现成的类库pika、txAMQP或者py-amqplib,这里选择了pika.

安装pika 。

安装pika可以使用pip来进行安装,pip是python的软件管理包,如果没有安装,可以通过apt-get安装 。

sudo apt-get install python-pip

通过pip安装pika:

sudo pip install pika

send.py代码 。

连接到rabbitmq服务器,因为是在本地测试,所以就用localhost就可以了.

connection = pika.BlockingConnection(pika.ConnectionParameters(        'localhost'))channel = connection.channel()

声明消息队列,消息将在这个队列中进行传递。如果将消息发送到不存在的队列,rabbitmq将会自动清除这些消息.

channel.queue_declare(queue='hello')

发送消息到上面声明的hello队列,其中exchange表示交换器,能精确指定消息应该发送到哪个队列,routing_key设置为队列的名称,body就是发送的内容,具体发送细节暂时先不关注.

channel.basic_publish(exchange='', routing_key='hello', body='Hello World!')

关闭连接 。

connection.close()

完整代码 。

#!/usr/bin/env python#coding=utf8import pika connection = pika.BlockingConnection(pika.ConnectionParameters(        'localhost'))channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body='Hello World!')print " [x] Sent 'Hello World!'"connection.close()

先来执行下这个程序,执行成功的话,rabbitmqctl应该成功增加了hello队列,并且队列里应该有一条信息,用rabbitmqctl命令来查看下 。

rabbitmqctl list_queues

在笔者的电脑上输出如下信息:

Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程

  。

确实有一个hello队列,并且队列里有一条信息。接下来用receive.py来获取队列里的信息.

receive.py代码 。

和send.py的前面两个步骤一样,都是要先连接服务器,然后声明消息的队列,这里就不再贴同样代码了.

接收消息更为复杂一些,需要定义一个回调函数来处理,这边的回调函数就是将信息打印出来.

def callback(ch, method, properties, body):  print "Received %r" % (body,)

告诉rabbitmq使用callback来接收信息 。

channel.basic_consume(callback, queue='hello', no_ack=True)

开始接收信息,并进入阻塞状态,队列里有信息才会调用callback进行处理。按ctrl+c退出.

channel.start_consuming()

完整代码 。

#!/usr/bin/env python#coding=utf8import pika connection = pika.BlockingConnection(pika.ConnectionParameters(        'localhost'))channel = connection.channel() channel.queue_declare(queue='hello') def callback(ch, method, properties, body):  print " [x] Received %r" % (body,) channel.basic_consume(callback, queue='hello', no_ack=True) print ' [*] Waiting for messages. To exit press CTRL+C'channel.start_consuming()

执行程序,就能够接收到队列hello里的消息Hello World!,然后打印在屏幕上。换一个终端,再次执行send.py,可以看到receive.py这边会再次接收到信息.

工作队列示例 。

1.准备工作(Preparation) 。

在实例程序中,用new_task.py来模拟任务分配者, worker.py来模拟工作者.

修改send.py,从命令行参数里接收信息,并发送 。

import sys message = ' '.join(sys.argv[1:]) or "Hello World!"channel.basic_publish(exchange='',           routing_key='hello',           body=message)print " [x] Sent %r" % (message,)

修改receive.py的回调函数.

import time def callback(ch, method, properties, body):  print " [x] Received %r" % (body,)  time.sleep( body.count('.') )  print " [x] Done"

这边先打开两个终端,都运行worker.py,处于监听状态,这边就相当于两个工作者。打开第三个终端,运行new_task.py 。

$ python new_task.py First message.$ python new_task.py Second message..$ python new_task.py Third message...$ python new_task.py Fourth message....$ python new_task.py Fifth message.....

观察worker.py接收到任务,其中一个工作者接收到3个任务 :

$ python worker.py [*] Waiting for messages. To exit press CTRL+C [x] Received 'First message.' [x] Received 'Third message...' [x] Received 'Fifth message.....'

另外一个工作者接收到2个任务 :

$ python worker.py [*] Waiting for messages. To exit press CTRL+C [x] Received 'Second message..' [x] Received 'Fourth message....'

从上面来看,每个工作者,都会依次分配到任务。那么如果一个工作者,在处理任务的时候挂掉,这个任务就没有完成,应当交由其他工作者处理。所以应当有一种机制,当一个工作者完成任务时,会反馈消息.

2.消息确认(Message acknowledgment) 。

消息确认就是当工作者完成任务后,会反馈给rabbitmq。修改worker.py中的回调函数:

def callback(ch, method, properties, body):  print " [x] Received %r" % (body,)  time.sleep(5)  print " [x] Done"  ch.basic_ack(delivery_tag = method.delivery_tag)

这边停顿5秒,可以方便ctrl+c退出.

去除no_ack=True参数或者设置为False也可以.

channel.basic_consume(callback, queue='hello', no_ack=False)

用这个代码运行,即使其中一个工作者ctrl+c退出后,正在执行的任务也不会丢失,rabbitmq会将任务重新分配给其他工作者.

3.消息持久化存储(Message durability) 。

虽然有了消息反馈机制,但是如果rabbitmq自身挂掉的话,那么任务还是会丢失。所以需要将任务持久化存储起来。声明持久化存储:

channel.queue_declare(queue='hello', durable=True)

但是这个程序会执行错误,因为hello这个队列已经存在,并且是非持久化的,rabbitmq不允许使用不同的参数来重新定义存在的队列。重新定义一个队列:

channel.queue_declare(queue='task_queue', durable=True)

在发送任务的时候,用delivery_mode=2来标记任务为持久化存储:

channel.basic_publish(exchange='',           routing_key="task_queue",           body=message,           properties=pika.BasicProperties(             delivery_mode = 2, # make message persistent           ))

4.公平调度(Fair dispatch) 。

上面实例中,虽然每个工作者是依次分配到任务,但是每个任务不一定一样。可能有的任务比较重,执行时间比较久;有的任务比较轻,执行时间比较短。如果能公平调度就最好了,使用basic_qos设置prefetch_count=1,使得rabbitmq不会在同一时间给工作者分配多个任务,即只有工作者完成任务之后,才会再次接收到任务.

channel.basic_qos(prefetch_count=1)

new_task.py完整代码 。

#!/usr/bin/env pythonimport pikaimport sys connection = pika.BlockingConnection(pika.ConnectionParameters(    host='localhost'))channel = connection.channel() channel.queue_declare(queue='task_queue', durable=True) message = ' '.join(sys.argv[1:]) or "Hello World!"channel.basic_publish(exchange='',           routing_key='task_queue',           body=message,           properties=pika.BasicProperties(             delivery_mode = 2, # make message persistent           ))print " [x] Sent %r" % (message,)connection.close()worker.py完整代码#!/usr/bin/env pythonimport pikaimport time connection = pika.BlockingConnection(pika.ConnectionParameters(    host='localhost'))channel = connection.channel() channel.queue_declare(queue='task_queue', durable=True)print ' [*] Waiting for messages. To exit press CTRL+C' def callback(ch, method, properties, body):  print " [x] Received %r" % (body,)  time.sleep( body.count('.') )  print " [x] Done"  ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1)channel.basic_consume(callback,           queue='task_queue') channel.start_consuming()

最后此篇关于Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程的文章就讲到这里了,如果你想了解更多关于Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com