- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章java算法实现红黑树完整代码示例由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
红黑树 。
定义 。
红黑树(英语:red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组.
红黑树的另一种定义是含有红黑链接并满足下列条件的二叉查找树:
红链接均为左链接;没有任何一个结点同时和两条红链接相连;该树是完美黑色平衡的,即任意空链接到根结点的路径上的黑链接数量相同.
满足这样定义的红黑树和相应的2-3树是一一对应的.
旋转 。
旋转又分为左旋和右旋。通常左旋操作用于将一个向右倾斜的红色链接旋转为向左链接。对比操作前后,可以看出,该操作实际上是将红线链接的两个节点中的一个较大的节点移动到根节点上.
左旋操作如下图:
右旋旋操作如下图:
即:
复杂度 。
红黑树的平均高度大约为lgn.
下图是红黑树在各种情况下的时间复杂度,可以看出红黑树是2-3查找树的一种实现,他能保证最坏情况下仍然具有对数的时间复杂度.
java代码 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
|
import
java.util.nosuchelementexception;
import
java.util.scanner;
public
class
redblackbst<key
extends
=
""
key=
""
>, value> {
private
static
final
boolean
red =
true
;
private
static
final
boolean
black =
false
;
private
node root;
//root of the bst
private
class
node {
private
key key;
//key
private
value val;
//associated data
private
node left, right;
//links to left and right subtrees
private
boolean
color;
//color of parent link
private
int
size;
//subtree count
public
node(key key, value val,
boolean
color,
int
size) {
this
.key = key;
this
.val = val;
this
.color = color;
this
.size = size;
}
}
//is node x red?
private
boolean
isred(node x) {
if
(x ==
null
) {
return
false
;
}
return
x.color == red;
}
//number of node in subtree rooted at x; 0 if x is null
private
int
size(node x) {
if
(x ==
null
) {
return
0
;
}
return
x.size;
}
/**
* return the number of key-value pairs in this symbol table
* @return the number of key-value pairs in this symbol table
*/
public
int
size() {
return
size(root);
}
/**
* is this symbol table empty?
* @return true if this symbol table is empty and false otherwise
*/
public
boolean
isempty() {
return
root ==
null
;
}
/**
* return the value associated with the given key
* @param key the key
* @return the value associated with the given key if the key is in the symbol table, and null if it is not.
*/
public
value get(key key) {
if
(key ==
null
) {
throw
new
nullpointerexception(
"argument to get() is null"
);
}
return
get(root, key);
}
//value associated with the given key in subtree rooted at x; null if no such key
private
value get(node x, key key) {
while
(x !=
null
) {
int
cmp = key.compareto(x.key);
if
(cmp <
0
) {
x = x.left;
}
else
if
(cmp >
0
) {
x = x.right;
}
else
{
return
x.val;
}
}
return
null
;
}
/**
* does this symbol table contain the given key?
* @param key the key
* @return true if this symbol table contains key and false otherwise
*/
public
boolean
contains(key key) {
return
get(key) !=
null
;
}
/***************************************************************************
* red-black tree insertion.
***************************************************************************/
/**
* inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* deletes the specified key (and its associated value) from this symbol table
* if the specified value is null.
*
* @param key the key
* @param val the value
* @throws nullpointerexception if key is null
*/
public
void
put(key key, value val) {
if
(key ==
null
) {
throw
new
nullpointerexception(
"first argument to put() is null"
);
}
if
(val ==
null
) {
delete(key);
return
;
}
root = put(root, key, val);
root.color = black;
}
// insert the key-value pair in the subtree rooted at h
private
node put(node h, key key, value val) {
if
(h ==
null
) {
return
new
node(key, val, red,
1
);
}
int
cmp = key.compareto(h.key);
if
(cmp <
0
) {
h.left = put(h.left, key, val);
}
else
if
(cmp >
0
) {
h.right = put(h.right, key, val);
}
else
{
h.val = val;
}
if
(isred(h.right) && !isred(h.left)) {
h = rotateleft(h);
}
if
(isred(h.left) && isred(h.left.left)) {
h = rotateright(h);
}
if
(isred(h.left) && isred(h.right)) {
flipcolors(h);
}
h.size = size(h.left) + size(h.right) +
1
;
return
h;
}
/***************************************************************************
* red-black tree deletion.
***************************************************************************/
/**
* removes the smallest key and associated value from the symbol table.
* @throws nosuchelementexception if the symbol table is empty
*/
public
void
deletemin() {
if
(isempty()) {
throw
new
nosuchelementexception(
"bst underflow"
);
}
// if both children of root are black, set root to red
if
(!isred(root.left) && !isred(root.right))
root.color = red;
root = deletemin(root);
if
(!isempty()) root.color = black;
// assert check();
}
// delete the key-value pair with the minimum key rooted at h
// delete the key-value pair with the minimum key rooted at h
private
node deletemin(node h) {
if
(h.left ==
null
){
return
null
;
}
if
(!isred(h.left) && !isred(h.left.left)) {
h = moveredleft(h);
}
h.left = deletemin(h.left);
return
balance(h);
}
/**
* removes the largest key and associated value from the symbol table.
* @throws nosuchelementexception if the symbol table is empty
*/
public
void
deletemax() {
if
(isempty()) {
throw
new
nosuchelementexception(
"bst underflow"
);
}
// if both children of root are black, set root to red
if
(!isred(root.left) && !isred(root.right))
root.color = red;
root = deletemax(root);
if
(!isempty()) root.color = black;
// assert check();
}
// delete the key-value pair with the maximum key rooted at h
// delete the key-value pair with the maximum key rooted at h
private
node deletemax(node h) {
if
(isred(h.left))
h = rotateright(h);
if
(h.right ==
null
)
return
null
;
if
(!isred(h.right) && !isred(h.right.left))
h = moveredright(h);
h.right = deletemax(h.right);
return
balance(h);
}
/**
* remove the specified key and its associated value from this symbol table
* (if the key is in this symbol table).
*
* @param key the key
* @throws nullpointerexception if key is null
*/
public
void
delete(key key) {
if
(key ==
null
) {
throw
new
nullpointerexception(
"argument to delete() is null"
);
}
if
(!contains(key)) {
return
;
}
//if both children of root are black, set root to red
if
(!isred(root.left) && !isred(root.right)) {
root.color = red;
}
root = delete(root, key);
if
(!isempty()) {
root.color = black;
}
}
// delete the key-value pair with the given key rooted at h
// delete the key-value pair with the given key rooted at h
private
node delete(node h, key key) {
if
(key.compareto(h.key) <
0
) {
if
(!isred(h.left) && !isred(h.left.left)) {
h = moveredleft(h);
}
h.left = delete(h.left, key);
}
else
{
if
(isred(h.left)) {
h = rotateright(h);
}
if
(key.compareto(h.key) ==
0
&& (h.right ==
null
)) {
return
null
;
}
if
(!isred(h.right) && !isred(h.right.left)) {
h = moveredright(h);
}
if
(key.compareto(h.key) ==
0
) {
node x = min(h.right);
h.key = x.key;
h.val = x.val;
h.right = deletemin(h.right);
}
else
{
h.right = delete(h.right, key);
}
}
return
balance(h);
}
/***************************************************************************
* red-black tree helper functions.
***************************************************************************/
// make a left-leaning link lean to the right
// make a left-leaning link lean to the right
private
node rotateright(node h) {
// assert (h != null) && isred(h.left);
node x = h.left;
h.left = x.right;
x.right = h;
x.color = x.right.color;
x.right.color = red;
x.size = h.size;
h.size = size(h.left) + size(h.right) +
1
;
return
x;
}
// make a right-leaning link lean to the left
// make a right-leaning link lean to the left
private
node rotateleft(node h) {
// assert (h != null) && isred(h.right);
node x = h.right;
h.right = x.left;
x.left = h;
x.color = x.left.color;
x.left.color = red;
x.size = h.size;
h.size = size(h.left) + size(h.right) +
1
;
return
x;
}
// flip the colors of a node and its two children
// flip the colors of a node and its two children
private
void
flipcolors(node h) {
// h must have opposite color of its two children
// assert (h != null) && (h.left != null) && (h.right != null);
// assert (!isred(h) && isred(h.left) && isred(h.right))
// || (isred(h) && !isred(h.left) && !isred(h.right));
h.color = !h.color;
h.left.color = !h.left.color;
h.right.color = !h.right.color;
}
// assuming that h is red and both h.left and h.left.left
// are black, make h.left or one of its children red.
// assuming that h is red and both h.left and h.left.left
// are black, make h.left or one of its children red.
private
node moveredleft(node h) {
// assert (h != null);
// assert isred(h) && !isred(h.left) && !isred(h.left.left);
flipcolors(h);
if
(isred(h.right.left)) {
h.right = rotateright(h.right);
h = rotateleft(h);
flipcolors(h);
}
return
h;
}
// assuming that h is red and both h.right and h.right.left
// are black, make h.right or one of its children red.
// assuming that h is red and both h.right and h.right.left
// are black, make h.right or one of its children red.
private
node moveredright(node h) {
// assert (h != null);
// assert isred(h) && !isred(h.right) && !isred(h.right.left);
flipcolors(h);
if
(isred(h.left.left)) {
h = rotateright(h);
flipcolors(h);
}
return
h;
}
// restore red-black tree invariant
// restore red-black tree invariant
private
node balance(node h) {
// assert (h != null);
if
(isred(h.right)) {
h = rotateleft(h);
}
if
(isred(h.left) && isred(h.left.left)) {
h = rotateright(h);
}
if
(isred(h.left) && isred(h.right)) {
flipcolors(h);
}
h.size = size(h.left) + size(h.right) +
1
;
return
h;
}
/***************************************************************************
* utility functions.
***************************************************************************/
/**
* returns the height of the bst (for debugging).
* @return the height of the bst (a 1-node tree has height 0)
*/
public
int
height() {
return
height(root);
}
private
int
height(node x) {
if
(x ==
null
) {
return
-
1
;
}
return
1
+ math.max(height(x.left), height(x.right));
}
/***************************************************************************
* ordered symbol table methods.
***************************************************************************/
/**
* returns the smallest key in the symbol table.
* @return the smallest key in the symbol table
* @throws nosuchelementexception if the symbol table is empty
*/
public
key min() {
if
(isempty()) {
throw
new
nosuchelementexception(
"called min() with empty symbol table"
);
}
return
min(root).key;
}
// the smallest key in subtree rooted at x; null if no such key
private
node min(node x) {
// assert x != null;
if
(x.left ==
null
) {
return
x;
}
else
{
return
min(x.left);
}
}
/**
* returns the largest key in the symbol table.
* @return the largest key in the symbol table
* @throws nosuchelementexception if the symbol table is empty
*/
public
key max() {
if
(isempty()) {
throw
new
nosuchelementexception(
"called max() with empty symbol table"
);
}
return
max(root).key;
}
// the largest key in the subtree rooted at x; null if no such key
private
node max(node x) {
// assert x != null;
if
(x.right ==
null
) {
return
x;
}
else
{
return
max(x.right);
}
}
/**
* returns the largest key in the symbol table less than or equal to key.
* @param key the key
* @return the largest key in the symbol table less than or equal to key
* @throws nosuchelementexception if there is no such key
* @throws nullpointerexception if key is null
*/
public
key floor(key key) {
if
(key ==
null
) {
throw
new
nullpointerexception(
"argument to floor() is null"
);
}
if
(isempty()) {
throw
new
nosuchelementexception(
"called floor() with empty symbol table"
);
}
node x = floor(root, key);
if
(x ==
null
) {
return
null
;
}
else
{
return
x.key;
}
}
// the largest key in the subtree rooted at x less than or equal to the given key
private
node floor(node x, key key) {
if
(x ==
null
) {
return
null
;
}
int
cmp = key.compareto(x.key);
if
(cmp ==
0
) {
return
x;
}
if
(cmp <
0
) {
return
floor(x.left, key);
}
node t = floor(x.right, key);
if
(t !=
null
) {
return
t;
}
else
{
return
x;
}
}
/**
* returns the smallest key in the symbol table greater than or equal to key.
* @param key the key
* @return the smallest key in the symbol table greater than or equal to key
* @throws nosuchelementexception if there is no such key
* @throws nullpointerexception if key is null
*/
public
key ceiling(key key) {
if
(key ==
null
) {
throw
new
nullpointerexception(
"argument to ceiling() is null"
);
}
if
(isempty()) {
throw
new
nosuchelementexception(
"called ceiling() with empty symbol table"
);
}
node x = ceiling(root, key);
if
(x ==
null
) {
return
null
;
}
else
{
return
x.key;
}
}
// the smallest key in the subtree rooted at x greater than or equal to the given key
private
node ceiling(node x, key key) {
if
(x ==
null
) {
return
null
;
}
int
cmp = key.compareto(x.key);
if
(cmp ==
0
) {
return
x;
}
if
(cmp >
0
) {
return
ceiling(x.right, key);
}
node t = ceiling(x.left, key);
if
(t !=
null
) {
return
t;
}
else
{
return
x;
}
}
/**
* return the kth smallest key in the symbol table.
* @param k the order statistic
* @return the kth smallest key in the symbol table
* @throws illegalargumentexception unless k is between 0 and
* <em>n</em> − 1
*/
public
key select(
int
k) {
if
(k <
0
|| k >= size()) {
throw
new
illegalargumentexception();
}
node x = select(root, k);
return
x.key;
}
// the key of rank k in the subtree rooted at x
private
node select(node x,
int
k) {
// assert x != null;
// assert k >= 0 && k < size(x);
int
t = size(x.left);
if
(t > k) {
return
select(x.left, k);
}
else
if
(t < k) {
return
select(x.right, k-t-
1
);
}
else
{
return
x;
}
}
/**
* return the number of keys in the symbol table strictly less than key.
* @param key the key
* @return the number of keys in the symbol table strictly less than key
* @throws nullpointerexception if key is null
*/
public
int
rank(key key) {
if
(key ==
null
) {
throw
new
nullpointerexception(
"argument to rank() is null"
);
}
return
rank(key, root);
}
// number of keys less than key in the subtree rooted at x
private
int
rank(key key, node x) {
if
(x ==
null
) {
return
0
;
}
int
cmp = key.compareto(x.key);
if
(cmp <
0
) {
return
rank(key, x.left);
}
else
if
(cmp >
0
) {
return
1
+ size(x.left) + rank(key, x.right);
}
else
{
return
size(x.left);
}
}
/***************************************************************************
* range count and range search.
***************************************************************************/
/**
* returns all keys in the symbol table as an iterable.
* to iterate over all of the keys in the symbol table named st,
* use the foreach notation: for (key key : st.keys()).
* @return all keys in the symbol table as an iterable
*/
public
iterable<key> keys() {
if
(isempty()) {
return
new
queue<key>();
}
return
keys(min(), max());
}
/**
* returns all keys in the symbol table in the given range,
* as an iterable.
* @return all keys in the symbol table between lo
* (inclusive) and hi (exclusive) as an iterable
* @throws nullpointerexception if either lo or hi
* is null
*/
public
iterable<key> keys(key lo, key hi) {
if
(lo ==
null
) {
throw
new
nullpointerexception(
"first argument to keys() is null"
);
}
if
(hi ==
null
) {
throw
new
nullpointerexception(
"second argument to keys() is null"
);
}
queue<key> queue =
new
queue<key>();
// if (isempty() || lo.compareto(hi) > 0) return queue;
keys(root, queue, lo, hi);
return
queue;
}
// add the keys between lo and hi in the subtree rooted at x
// to the queue
private
void
keys(node x, queue<key> queue, key lo, key hi) {
if
(x ==
null
) {
return
;
}
int
cmplo = lo.compareto(x.key);
int
cmphi = hi.compareto(x.key);
if
(cmplo <
0
) {
keys(x.left, queue, lo, hi);
}
if
(cmplo <=
0
&& cmphi >=
0
) {
queue.enqueue(x.key);
}
if
(cmphi >
0
) {
keys(x.right, queue, lo, hi);
}
}
/**
* returns the number of keys in the symbol table in the given range.
* @return the number of keys in the symbol table between lo
* (inclusive) and hi (exclusive)
* @throws nullpointerexception if either lo or hi
* is null
*/
public
int
size(key lo, key hi) {
if
(lo ==
null
) {
throw
new
nullpointerexception(
"first argument to size() is null"
);
}
if
(hi ==
null
) {
throw
new
nullpointerexception(
"second argument to size() is null"
);
}
if
(lo.compareto(hi) >
0
) {
return
0
;
}
if
(contains(hi)) {
return
rank(hi) - rank(lo) +
1
;
}
else
{
return
rank(hi) - rank(lo);
}
}
/***************************************************************************
* check integrity of red-black tree data structure.
***************************************************************************/
private
boolean
check() {
if
(!isbst()) system.out.println(
"not in symmetric order"
);
if
(!issizeconsistent()) system.out.println(
"subtree counts not consistent"
);
if
(!isrankconsistent()) system.out.println(
"ranks not consistent"
);
if
(!is23()) system.out.println(
"not a 2-3 tree"
);
if
(!isbalanced()) system.out.println(
"not balanced"
);
return
isbst() && issizeconsistent() && isrankconsistent() && is23() && isbalanced();
}
// does this binary tree satisfy symmetric order?
// note: this test also ensures that data structure is a binary tree since order is strict
private
boolean
isbst() {
return
isbst(root,
null
,
null
);
}
// is the tree rooted at x a bst with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// credit: bob dondero's elegant solution
private
boolean
isbst(node x, key min, key max) {
if
(x ==
null
) {
return
true
;
}
if
(min !=
null
&& x.key.compareto(min) <=
0
) {
return
false
;
}
if
(max !=
null
&& x.key.compareto(max) >=
0
) {
return
false
;
}
return
isbst(x.left, min, x.key) && isbst(x.right, x.key, max);
}
// are the size fields correct?
private
boolean
issizeconsistent() {
return
issizeconsistent(root);
}
private
boolean
issizeconsistent(node x) {
if
(x ==
null
) {
return
true
;
}
if
(x.size != size(x.left) + size(x.right) +
1
) {
return
false
;
}
return
issizeconsistent(x.left) && issizeconsistent(x.right);
}
// check that ranks are consistent
private
boolean
isrankconsistent() {
for
(
int
i =
0
; i < size(); i++) {
if
(i != rank(select(i))) {
return
false
;
}
}
for
(key key : keys()) {
if
(key.compareto(select(rank(key))) !=
0
) {
return
false
;
}
}
return
true
;
}
// does the tree have no red right links, and at most one (left)
// red links in a row on any path?
private
boolean
is23() {
return
is23(root);
}
private
boolean
is23(node x) {
if
(x ==
null
) {
return
true
;
}
if
(isred(x.right)) {
return
false
;
}
if
(x != root && isred(x) && isred(x.left)){
return
false
;
}
return
is23(x.left) && is23(x.right);
}
// do all paths from root to leaf have same number of black edges?
private
boolean
isbalanced() {
int
black =
0
;
// number of black links on path from root to min
node x = root;
while
(x !=
null
) {
if
(!isred(x)) black++;
x = x.left;
}
return
isbalanced(root, black);
}
// does every path from the root to a leaf have the given number of black links?
private
boolean
isbalanced(node x,
int
black) {
if
(x ==
null
) {
return
black ==
0
;
}
if
(!isred(x)) {
black--;
}
return
isbalanced(x.left, black) && isbalanced(x.right, black);
}
/**
* unit tests the redblackbst data type.
*/
public
static
void
main(string[] args) {
redblackbst<string, integer=
""
> st =
new
redblackbst<string, integer=
""
>();
string data =
"a b c d e f g h m n o p"
;
scanner sc =
new
scanner(data);
int
i =
0
;
while
(sc.hasnext()) {
string key = sc.next();
st.put(key, i);
i++;
}
sc.close();
for
(string s : st.keys())
system.out.println(s +
" "
+ st.get(s));
system.out.println();
boolean
result = st.check();
system.out.println(
"check: "
+ result);
}
}
|
输出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
<code>a
0
b
1
c
2
d
3
e
4
f
5
g
6
h
7
m
8
n
9
o
10
p
11
check:
true
</code>
|
总结 。
以上就是本文关于java算法实现红黑树完整代码示例的全部内容,希望对大家有所帮助。有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持! 。
原文链接:https://www.2cto.com/kf/201608/541726.html 。
最后此篇关于java算法实现红黑树完整代码示例的文章就讲到这里了,如果你想了解更多关于java算法实现红黑树完整代码示例的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
我正在实现红黑 SOR 的并行版本。 我想获得每个进程的最大误差的 MPI_Allreduce 部分不起作用。它永远不会改变,即使只有一个过程,它也会给出高于 2.0 的值。怎么回事?? 这是代码,有
我为拉普拉斯方程(一个简单的加热板问题)在我的红黑 Gauss-Seidel 求解器中添加了 OpenACC 指令,但是 GPU 加速的代码并不比 CPU 快,即使对于大问题也是如此。 我还编写了一个
我是一名优秀的程序员,十分优秀!