gpt4 book ai didi

利用numpy和pandas处理csv文件中的时间方法

转载 作者:qq735679552 更新时间:2022-09-28 22:32:09 25 4
gpt4 key购买 nike

CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.

这篇CFSDN的博客文章利用numpy和pandas处理csv文件中的时间方法由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.

环境:numpy,pandas,python3 。

在机器学习和深度学习的过程中,对于处理预测,回归问题,有时候变量是时间,需要进行合适的转换处理后才能进行学习分析,关于时间的变量如下所示,利用pandas和numpy对csv文件中时间进行处理.

?
1
2
3
4
date (UTC) Price
01/01/2015 0:00 48.1
01/01/2015 1:00 47.33
01/01/2015 2:00 42.27
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#coding:utf-8
import datetime
import pandas as pd
import numpy as np
import pickle
#用pandas将时间转为标准格式
dateparse = lambda dates: pd.datetime.strptime(dates,'%d/%m/%Y %H:%M')
#将时间栏合并,并转为标准时间格式
rawdata = pd.read_csv('RealMarketPriceDataPT.csv',parse_dates={'timeline':['date','(UTC)']},date_parser=dateparse)
#定义一个将时间转为数字的函数,s为字符串
def datestr2num(s):
  #toordinal()将时间格式字符串转为数字
  return datetime.datetime.strptime(s,'%Y-%m-%d %H:%M:%S').toordinal()
x = []
y = []
new_date = []
for i in range(rawdata.shape[0]):
  x_convert = int(datestr2num(str(rawdata.ix[i,0])))
  new_date.append(x_convert)
  y_convert = rawdata.ix[i,1].astype(np.float32)
  x.append(x_convert)
  y.append(y_convert)
x = np.array(x).astype(np.float32)
"""
with open('price.pickle','wb') as f:
  pickle.dump((x,y),f)
"""
print(datetime.datetime.fromordinal(new_date[0]),'------>>>>>>',new_date[0])
print(datetime.datetime.fromordinal(new_date[10]),'------>>>>>>',new_date[10])
print(datetime.datetime.fromordinal(new_date[20]),'------>>>>>>',new_date[20])
print(datetime.datetime.fromordinal(new_date[30]),'------>>>>>>',new_date[30])
print(datetime.datetime.fromordinal(new_date[40]),'------>>>>>>',new_date[40])
print(datetime.datetime.fromordinal(new_date[50]),'------>>>>>>',new_date[50])

结果 。

将csv文件中的时间栏合并为一列,并转为方便数据分析的float或int类型 。

利用numpy和pandas处理csv文件中的时间方法

以上这篇利用numpy和pandas处理csv文件中的时间方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我.

原文链接:https://blog.csdn.net/szj_huhu/article/details/76218204 。

最后此篇关于利用numpy和pandas处理csv文件中的时间方法的文章就讲到这里了,如果你想了解更多关于利用numpy和pandas处理csv文件中的时间方法的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com