- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章dataframe设置两个条件取值的实例由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
如下所示:
1
2
3
4
5
6
7
8
9
10
11
|
>>> import pandas as pd
>>> import numpy as np
>>> from pandas import Series, DataFrame
>>> df = DataFrame({'name':['a','a','b','b'],'classes':[1,2,3,4],'price':[11,22,33,44]})
>>> df
classes name price
0 1 a 11
1 2 a 22
2 3 b 33
3 4 b 44
>>>
|
根据index和columns取值 。
1
2
3
|
>>> s = df.loc[0,'price']
>>> s
11
|
根据同行的columns的值取同行的另一个columns的值 。
1
2
3
4
5
6
7
|
>>> sex = df.loc[(df.classes==1)&(df.name=='a'),'price']
>>> sex
0 11
Name: price, dtype: int64
>>> sex = df.loc[(df.classes==1)&(df.name=='a'),'price'].values[0]
>>> sex
11
|
根据条件同时取得多个值 。
1
2
3
4
5
6
|
>>> name,price = df.loc[df.classes==1,('name','price')].values[0]
>>> name
'a'
>>> price
11
>>>
|
对一列赋值 。
1
2
3
4
5
6
7
8
|
>>> df.loc[: , 'price']=0
>>> df
classes name price
0 1 a 0
1 2 a 0
2 3 b 0
3 4 b 0
>>>
|
对df的一个列进行函数运算 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
【1】
>>> df['name'] = df['name'].apply(lambda x: x.upper())
>>> df
classes name price
0 1 A 11
1 2 A 22
2 3 B 33
3 4 B 44
【2】
>>> df.loc[:, 'name'] = df['name'].apply(lambda x: x.upper())
>>> df
classes name price
0 1 A 11
1 2 A 22
2 3 B 33
3 4 B 44
>>>
|
。
对df的几个列进行函数运算 。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
【1】
>>> df[['classes','price']] = df[['classes', 'price']].applymap(lambda x: str(x))
>>> print(type(df.loc[0, "classes"]))
<
class
'str'>
>>> print(df.loc[0, "classes"])
1
【2】
>>> df.loc[:, ['classes','price']] = df[['classes', 'price']].applymap(lambda x: int(x))
>>> print(type(df.loc[0, "classes"]))
<
class
'int'>
>>> print(df.loc[0, "classes"])
1
>>>
|
对两个列进行去重 。
1
2
3
4
5
6
7
8
9
10
11
12
|
>>> df
classes name price
0 1 a 11
1 1 a 22
2 3 b 33
3 4 b 44
>>> df.drop_duplicates(subset=['classes', 'name'], inplace=True)
>>> df
classes name price
0 1 a 11
2 3 b 33
3 4 b 44
|
多个条件分割字符串 。
1
2
3
4
5
6
7
8
9
10
|
>>> fund_memeber = '赵4、 王五'
>>> fund_manager_list = re.split('[;, 、]', fund_memeber)
>>> fund_manager_list
['赵四', '', '王五']
#DataFrame构造器
>>> df = DataFrame({'x':[1],'y':[2]})
>>> df
x y
0 1 2
>>>
|
删除某列值为特定值得那一行 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
>>> df = DataFrame({'name':['a','b','c','d'],'classes':[1,2,3,4],'price':[11,22,33,44]})
>>> df
classes name price
0 1 a 11
1 2 b 22
2 3 c 33
3 4 d 44
【方法一】
>>> df = df.loc[df['name']!='a']
>>> df
classes name price
1 2 b 22
2 3 c 33
3 4 d 44
>>>
【方法二】
df.drop(df[df.name=='a'].index,axis=0)
#筛选df的每列值包含某个字段‘/a'
>>> import pandas as pd
>>> df = pd.DataFrame({'a':['A', 'B'], 'b': ['AA', 'BB']})
>>> df
a b
0 A AA
1 B BB
>>> df[df['a'].str.contains(r'A')]
a b
0 A AA
>>> df = pd.DataFrame({'a':['/api/', 'B'], 'b': ['AA', 'BB']})
>>> df
a b
0 /api/ AA
1 B BB
>>> df[df['a'].str.contains(r'/api/')]
a b
0 /api/ AA
>>>
|
。
把列变成index和把index变成列 。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
df
request_url visit_times
9 fofeasy_产品基本信息 7
8 投顾挖掘 6
5 投顾挖掘 5
6 投顾挖掘 5
7 fofeasy_产品基本信息 5
3 fofeasy_产品基本信息 4
4 fofeasy_产品基本信息 4
2 投顾挖掘 2
0 行业数据——其他 1
1 行业数据——其他 1
x = df.set_index('request_url')
x
visit_times
request_url
fofeasy_产品基本信息 7
投顾挖掘 6
投顾挖掘 5
投顾挖掘 5
fofeasy_产品基本信息 5
fofeasy_产品基本信息 4
fofeasy_产品基本信息 4
投顾挖掘 2
行业数据——其他 1
行业数据——其他 1
x.reset_index('request_url')
request_url visit_times
0 fofeasy_产品基本信息 7
1 投顾挖掘 6
2 投顾挖掘 5
3 投顾挖掘 5
4 fofeasy_产品基本信息 5
5 fofeasy_产品基本信息 4
6 fofeasy_产品基本信息 4
7 投顾挖掘 2
8 行业数据——其他 1
9 行业数据——其他 1
|
pandas 按照列A分组,将同一组的列B求和,生成新的Dataframe 。
1
2
3
4
5
6
7
|
>>>df.groupby(by=['request_url'])['visit_times'].sum()
>>>
request_url
fofeasy_产品基本信息 20
投顾挖掘 18
行业数据——其他 2
Name: visit_times, dtype: int64
|
dict变成dataframe 。
1
2
3
4
5
|
In [15]: dict = pd.DataFrame({'x':1, 'y':2}, index=[0])
In [16]: dict
Out[16]:
x y
0 1 2
|
iloc 。
1
2
3
4
5
6
7
|
In [69]: df1.iloc[1:5, 2:4]
Out[69]:
4 6
2 0.301624 -2.179861
4 1.462696 -1.743161
6 1.314232 0.690579
8 0.014871 3.357427
|
以上这篇dataframe设置两个条件取值的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我.
原文链接:https://blog.csdn.net/GeekLeee/article/details/75268762 。
最后此篇关于dataframe设置两个条件取值的实例的文章就讲到这里了,如果你想了解更多关于dataframe设置两个条件取值的实例的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!