- ubuntu12.04环境下使用kvm ioctl接口实现最简单的虚拟机
- Ubuntu 通过无线网络安装Ubuntu Server启动系统后连接无线网络的方法
- 在Ubuntu上搭建网桥的方法
- ubuntu 虚拟机上网方式及相关配置详解
CFSDN坚持开源创造价值,我们致力于搭建一个资源共享平台,让每一个IT人在这里找到属于你的精彩世界.
这篇CFSDN的博客文章C++实现遗传算法由作者收集整理,如果你对这篇文章有兴趣,记得点赞哟.
本文实例讲述了C++实现简单遗传算法。分享给大家供大家参考。具体实现方法如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
// CMVSOGA.h : main header file for the CMVSOGA.cpp
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
#if !defined(AFX_CMVSOGA_H__45BECA_61EB_4A0E_9746_9A94D1CCF767__INCLUDED_)
#define AFX_CMVSOGA_H__45BECA_61EB_4A0E_9746_9A94D1CCF767__INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include "Afxtempl.h"
#define variablenum 14
class
CMVSOGA
{
public
:
CMVSOGA();
~CMVSOGA();
void
selectionoperator();
void
crossoveroperator();
void
mutationoperator();
void
initialpopulation(
int
,
int
,
double
,
double
,
double
*,
double
*);
//种群初始化
void
generatenextpopulation();
//生成下一代种群
void
evaluatepopulation();
//评价个体,求最佳个体
void
calculateobjectvalue();
//计算目标函数值
void
calculatefitnessvalue();
//计算适应度函数值
void
findbestandworstindividual();
//寻找最佳个体和最差个体
void
performevolution();
void
GetResult(
double
*);
void
GetPopData(CList <
double
,
double
>&);
void
SetFitnessData(CList <
double
,
double
>&,CList <
double
,
double
>&,CList <
double
,
double
>&);
private
:
struct
individual
{
double
chromosome[variablenum];
//染色体编码长度应该为变量的个数
double
value;
double
fitness;
//适应度
};
double
variabletop[variablenum];
//变量值
double
variablebottom[variablenum];
//变量值
int
popsize;
//种群大小
// int generation; //世代数
int
best_index;
int
worst_index;
double
crossoverrate;
//交叉率
double
mutationrate;
//变异率
int
maxgeneration;
//最大世代数
struct
individual bestindividual;
//最佳个体
struct
individual worstindividual;
//最差个体
struct
individual current;
//当前个体
struct
individual current1;
//当前个体
struct
individual currentbest;
//当前最佳个体
CList <
struct
individual,
struct
individual &> population;
//种群
CList <
struct
individual,
struct
individual &> newpopulation;
//新种群
CList <
double
,
double
> cfitness;
//存储适应度值
//怎样使链表的数据是一个结构体????主要是想把种群作成链表。节省空间。
};
#endif
执行文件:
// CMVSOGA.cpp : implementation file
//
#include "stdafx.h"
//#include "vld.h"
#include "CMVSOGA.h"
#include "math.h"
#include "stdlib.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static
char
THIS_FILE[] = __FILE__;
#endif
/////////////////////////////////////////////////////////////////////////////
// CMVSOGA.cpp
CMVSOGA::CMVSOGA()
{
best_index=0;
worst_index=0;
crossoverrate=0;
//交叉率
mutationrate=0;
//变异率
maxgeneration=0;
}
CMVSOGA::~CMVSOGA()
{
best_index=0;
worst_index=0;
crossoverrate=0;
//交叉率
mutationrate=0;
//变异率
maxgeneration=0;
population.RemoveAll();
//种群
newpopulation.RemoveAll();
//新种群
cfitness.RemoveAll();
}
void
CMVSOGA::initialpopulation(
int
ps,
int
gen ,
double
cr ,
double
mr,
double
*xtop,
double
*xbottom)
//第一步,初始化。
{
//应该采用一定的策略来保证遗传算法的初始化合理,采用产生正态分布随机数初始化?选定中心点为多少?
int
i,j;
popsize=ps;
maxgeneration=gen;
crossoverrate=cr;
mutationrate =mr;
for
(i=0;i<variablenum;i++)
{
variabletop[i] =xtop[i];
variablebottom[i] =xbottom[i];
}
//srand( (unsigned)time( NULL ) ); //寻找一个真正的随机数生成函数。
for
(i=0;i<popsize;i++)
{
for
(j=0;j<variablenum ;j++)
{
current.chromosome[j]=
double
(
rand
()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
current.fitness=0;
current.value=0;
population.InsertAfter(population.FindIndex(i),current);
//除了初始化使用insertafter外,其他的用setat命令。
}
}
void
CMVSOGA::generatenextpopulation()
//第三步,生成下一代。
{
//srand( (unsigned)time( NULL ) );
selectionoperator();
crossoveroperator();
mutationoperator();
}
//void CMVSOGA::evaluatepopulation() //第二步,评价个体,求最佳个体
//{
// calculateobjectvalue();
// calculatefitnessvalue(); //在此步中因该按适应度值进行排序.链表的排序.
// findbestandworstindividual();
//}
void
CMVSOGA:: calculateobjectvalue()
//计算函数值,应该由外部函数实现。主要因为目标函数很复杂。
{
int
i,j;
double
x[variablenum];
for
(i=0; i<popsize; i++)
{
current=population.GetAt(population.FindIndex(i));
current.value=0;
//使用外部函数进行,在此只做结果的传递。
for
(j=0;j<variablenum;j++)
{
x[j]=current.chromosome[j];
current.value=current.value+(j+1)*
pow
(x[j],4);
}
////使用外部函数进行,在此只做结果的传递。
population.SetAt(population.FindIndex(i),current);
}
}
void
CMVSOGA::mutationoperator()
//对于浮点数编码,变异算子的选择具有决定意义。
//需要guass正态分布函数,生成方差为sigma,均值为浮点数编码值c。
{
// srand((unsigned int) time (NULL));
int
i,j;
double
r1,r2,p,sigma;
//sigma高斯变异参数
for
(i=0;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
//生成均值为current.chromosome,方差为sigma的高斯分布数
for
(j=0; j<variablenum; j++)
{
r1 =
double
(
rand
()%10001)/10000;
r2 =
double
(
rand
()%10001)/10000;
p =
double
(
rand
()%10000)/10000;
if
(p<mutationrate)
{
double
sign;
sign=
rand
()%2;
sigma=0.01*(variabletop[j]-variablebottom [j]);
//高斯变异
if
(sign)
{
current.chromosome[j] = (current.chromosome[j]
+ sigma*
sqrt
(-2*
log
(r1)/0.4323)*
sin
(2*3.1415926*r2));
}
else
{
current.chromosome[j] = (current.chromosome[j]
- sigma*
sqrt
(-2*
log
(r1)/0.4323)*
sin
(2*3.1415926*r2));
}
if
(current.chromosome[j]>variabletop[j])
{
current.chromosome[j]=
double
(
rand
()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
if
(current.chromosome[j]<variablebottom [j])
{
current.chromosome[j]=
double
(
rand
()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
}
}
population.SetAt(population.FindIndex(i),current);
}
}
void
CMVSOGA::selectionoperator()
//从当前个体中按概率选择新种群,应该加一个复制选择,提高种群的平均适应度
{
int
i,j,pindex=0;
double
p,pc,sum;
i=0;
j=0;
pindex=0;
p=0;
pc=0;
sum=0.001;
newpopulation.RemoveAll();
cfitness.RemoveAll();
//链表排序
// population.SetAt (population.FindIndex(0),current); //多余代码
for
(i=1;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
for
(j=0;j<i;j++)
//从小到大用before排列。
{
current1=population.GetAt(population.FindIndex(j));
//临时借用变量
if
(current.fitness<=current1.fitness)
{
population.InsertBefore(population.FindIndex(j),current);
population.RemoveAt(population.FindIndex(i+1));
break
;
}
}
// m=population.GetCount();
}
//链表排序
for
(i=0;i<popsize;i++)
//求适应度总值,以便归一化,是已经排序好的链。
{
current=population.GetAt(population.FindIndex(i));
//取出来的值出现问题.
sum+=current.fitness;
}
for
(i=0;i<popsize; i++)
//归一化
{
current=population.GetAt(population.FindIndex(i));
//population 有值,为什么取出来的不正确呢??
current.fitness=current.fitness/sum;
cfitness.InsertAfter (cfitness .FindIndex(i),current.fitness);
}
for
(i=1;i<popsize; i++)
//概率值从小到大;
{
current.fitness=cfitness.GetAt (cfitness.FindIndex(i-1))
+cfitness.GetAt(cfitness.FindIndex(i));
//归一化
cfitness.SetAt (cfitness .FindIndex(i),current.fitness);
population.SetAt(population.FindIndex(i),current);
}
for
(i=0;i<popsize;)
//轮盘赌概率选择。本段还有问题。
{
p=
double
(
rand
()%999)/1000+0.0001;
//随机生成概率
pindex=0;
//遍历索引
pc=cfitness.GetAt(cfitness.FindIndex(1));
//为什么取不到数值???20060910
while
(p>=pc&&pindex<popsize)
//问题所在。
{
pc=cfitness.GetAt(cfitness .FindIndex(pindex));
pindex++;
}
//必须是从index~popsize,选择高概率的数。即大于概率p的数应该被选择,选择不满则进行下次选择。
for
(j=popsize-1;j<pindex&&i<popsize;j--)
{
newpopulation.InsertAfter (newpopulation.FindIndex(0),
population.GetAt (population.FindIndex(j)));
i++;
}
}
for
(i=0;i<popsize; i++)
{
population.SetAt (population.FindIndex(i),
newpopulation.GetAt (newpopulation.FindIndex(i)));
}
// j=newpopulation.GetCount();
// j=population.GetCount();
newpopulation.RemoveAll();
}
//current 变化后,以上没有问题了。
void
CMVSOGA:: crossoveroperator()
//非均匀算术线性交叉,浮点数适用,alpha ,beta是(0,1)之间的随机数
//对种群中两两交叉的个体选择也是随机选择的。也可取beta=1-alpha;
//current的变化会有一些改变。
{
int
i,j;
double
alpha,beta;
CList <
int
,
int
> index;
int
point,temp;
double
p;
// srand( (unsigned)time( NULL ) );
for
(i=0;i<popsize;i++)
//生成序号
{
index.InsertAfter (index.FindIndex(i),i);
}
for
(i=0;i<popsize;i++)
//打乱序号
{
point=
rand
()%(popsize-1);
temp=index.GetAt(index.FindIndex(i));
index.SetAt(index.FindIndex(i),
index.GetAt(index.FindIndex(point)));
index.SetAt(index.FindIndex(point),temp);
}
for
(i=0;i<popsize-1;i+=2)
{
//按顺序序号,按序号选择两个母体进行交叉操作。
p=
double
(
rand
()%10000)/10000.0;
if
(p<crossoverrate)
{
alpha=
double
(
rand
()%10000)/10000.0;
beta=
double
(
rand
()%10000)/10000.0;
current=population.GetAt(population.FindIndex(index.GetAt(index.FindIndex(i))));
current1=population.GetAt(population.FindIndex(index.GetAt(index.FindIndex(i+1))));
//临时使用current1代替
for
(j=0;j<variablenum;j++)
{
//交叉
double
sign;
sign=
rand
()%2;
if
(sign)
{
current.chromosome[j]=(1-alpha)*current.chromosome[j]+
beta*current1.chromosome[j];
}
else
{
current.chromosome[j]=(1-alpha)*current.chromosome[j]-
beta*current1.chromosome[j];
}
if
(current.chromosome[j]>variabletop[j])
//判断是否超界.
{
current.chromosome[j]=
double
(
rand
()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
if
(current.chromosome[j]<variablebottom [j])
{
current.chromosome[j]=
double
(
rand
()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
if
(sign)
{
current1.chromosome[j]=alpha*current.chromosome[j]+
(1- beta)*current1.chromosome[j];
}
else
{
current1.chromosome[j]=alpha*current.chromosome[j]-
(1- beta)*current1.chromosome[j];
}
if
(current1.chromosome[j]>variabletop[j])
{
current1.chromosome[j]=
double
(
rand
()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
if
(current1.chromosome[j]<variablebottom [j])
{
current1.chromosome[j]=
double
(
rand
()%10000)/10000*(variabletop[j]-variablebottom[j])+variablebottom[j];
}
}
//回代
}
newpopulation.InsertAfter (newpopulation.FindIndex(i),current);
newpopulation.InsertAfter (newpopulation.FindIndex(i),current1);
}
ASSERT(newpopulation.GetCount()==popsize);
for
(i=0;i<popsize;i++)
{
population.SetAt (population.FindIndex(i),
newpopulation.GetAt (newpopulation.FindIndex(i)));
}
newpopulation.RemoveAll();
index.RemoveAll();
}
void
CMVSOGA:: findbestandworstindividual( )
{
int
i;
bestindividual=population.GetAt(population.FindIndex(best_index));
worstindividual=population.GetAt(population.FindIndex(worst_index));
for
(i=1;i<popsize; i++)
{
current=population.GetAt(population.FindIndex(i));
if
(current.fitness>bestindividual.fitness)
{
bestindividual=current;
best_index=i;
}
else
if
(current.fitness<worstindividual.fitness)
{
worstindividual=current;
worst_index=i;
}
}
population.SetAt(population.FindIndex(worst_index),
population.GetAt(population.FindIndex(best_index)));
//用最好的替代最差的。
if
(maxgeneration==0)
{
currentbest=bestindividual;
}
else
{
if
(bestindividual.fitness>=currentbest.fitness)
{
currentbest=bestindividual;
}
}
}
void
CMVSOGA:: calculatefitnessvalue()
//适应度函数值计算,关键是适应度函数的设计
//current变化,这段程序变化较大,特别是排序。
{
int
i;
double
temp;
//alpha,beta;//适应度函数的尺度变化系数
double
cmax=100;
for
(i=0;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
if
(current.value<cmax)
{
temp=cmax-current.value;
}
else
{
temp=0.0;
}
/*
if((population[i].value+cmin)>0.0)
{temp=cmin+population[i].value;}
else
{temp=0.0;
}
*/
current.fitness=temp;
population.SetAt(population.FindIndex(i),current);
}
}
void
CMVSOGA:: performevolution()
//演示评价结果,有冗余代码,current变化,程序应该改变较大
{
if
(bestindividual.fitness>currentbest.fitness)
{
currentbest=population.GetAt(population.FindIndex(best_index));
}
else
{
population.SetAt(population.FindIndex(worst_index),currentbest);
}
}
void
CMVSOGA::GetResult(
double
*Result)
{
int
i;
for
(i=0;i<variablenum;i++)
{
Result[i]=currentbest.chromosome[i];
}
Result[i]=currentbest.value;
}
void
CMVSOGA::GetPopData(CList <
double
,
double
>&PopData)
{
PopData.RemoveAll();
int
i,j;
for
(i=0;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
for
(j=0;j<variablenum;j++)
{
PopData.AddTail(current.chromosome[j]);
}
}
}
void
CMVSOGA::SetFitnessData(CList <
double
,
double
>&PopData,CList <
double
,
double
>&FitnessData,CList <
double
,
double
>&ValueData)
{
int
i,j;
for
(i=0;i<popsize;i++)
{
current=population.GetAt(population.FindIndex(i));
//就因为这一句,出现了很大的问题。
for
(j=0;j<variablenum;j++)
{
current.chromosome[j]=PopData.GetAt(PopData.FindIndex(i*variablenum+j));
}
current.fitness=FitnessData.GetAt(FitnessData.FindIndex(i));
current.value=ValueData.GetAt(ValueData.FindIndex(i));
population.SetAt(population.FindIndex(i),current);
}
FitnessData.RemoveAll();
PopData.RemoveAll();
ValueData.RemoveAll();
}
# re: C++遗传算法源程序
/********************************************************************
Filename: aiWorld.h
Purpose: 遗传算法,花朵演化。
Id:
Copyright:
Licence:
*********************************************************************/
#ifndef AIWORLD_H_
#define AIWORLD_H_
#include <iostream>
#include <ctime>
#include <cstdlib>
#include <cmath>
#define kMaxFlowers 10
using
std::cout;
using
std::endl;
class
ai_World
{
public
:
ai_World()
{
srand
(
time
(0));
}
~ai_World() {}
int
temperature[kMaxFlowers];
//温度
int
water[kMaxFlowers];
//水质
int
sunlight[kMaxFlowers];
//阳光
int
nutrient[kMaxFlowers];
//养分
int
beneficialInsect[kMaxFlowers];
//益虫
int
harmfulInsect[kMaxFlowers];
//害虫
int
currentTemperature;
int
currentWater;
int
currentSunlight;
int
currentNutrient;
int
currentBeneficialInsect;
int
currentHarmfulInsect;
/**
第一代花朵
*/
void
Encode();
/**
花朵适合函数
*/
int
Fitness(
int
flower);
/**
花朵演化
*/
void
Evolve();
/**
返回区间[start, end]的随机数
*/
inline
int
tb_Rnd(
int
start,
int
end)
{
if
(start > end)
return
0;
else
{
//srand(time(0));
return
(
rand
() % (end + 1) + start);
}
}
/**
显示数值
*/
void
show();
};
// ----------------------------------------------------------------- //
void
ai_World::Encode()
// ----------------------------------------------------------------- //
{
int
i;
for
(i=0;i<kMaxFlowers;i++)
{
temperature[i]=tb_Rnd(1,75);
water[i]=tb_Rnd(1,75);
sunlight[i]=tb_Rnd(1,75);
nutrient[i]=tb_Rnd(1,75);
beneficialInsect[i]=tb_Rnd(1,75);
harmfulInsect[i]=tb_Rnd(1,75);
}
currentTemperature=tb_Rnd(1,75);
currentWater=tb_Rnd(1,75);
currentSunlight=tb_Rnd(1,75);
currentNutrient=tb_Rnd(1,75);
currentBeneficialInsect=tb_Rnd(1,75);
currentHarmfulInsect=tb_Rnd(1,75);
currentTemperature=tb_Rnd(1,75);
currentWater=tb_Rnd(1,75);
currentSunlight=tb_Rnd(1,75);
currentNutrient=tb_Rnd(1,75);
currentBeneficialInsect=tb_Rnd(1,75);
currentHarmfulInsect=tb_Rnd(1,75);
}
// ----------------------------------------------------------------- //
int
ai_World::Fitness(
int
flower)
// ----------------------------------------------------------------- //
{
int
theFitness;
theFitness=
abs
(temperature[flower]-currentTemperature);
theFitness=theFitness+
abs
(water[flower]-currentWater);
theFitness=theFitness+
abs
(sunlight[flower]-currentSunlight);
theFitness=theFitness+
abs
(nutrient[flower]-currentNutrient);
theFitness=theFitness+
abs
(beneficialInsect[flower]-currentBeneficialInsect);
theFitness=theFitness+
abs
(harmfulInsect[flower]-currentHarmfulInsect);
return
(theFitness);
}
// ----------------------------------------------------------------- //
void
ai_World::Evolve()
// ----------------------------------------------------------------- //
{
int
fitTemperature[kMaxFlowers];
int
fitWater[kMaxFlowers];
int
fitSunlight[kMaxFlowers];
int
fitNutrient[kMaxFlowers];
int
fitBeneficialInsect[kMaxFlowers];
int
fitHarmfulInsect[kMaxFlowers];
int
fitness[kMaxFlowers];
int
i;
int
leastFit=0;
int
leastFitIndex;
for
(i=0;i<kMaxFlowers;i++)
if
(Fitness(i)>leastFit)
{
leastFit=Fitness(i);
leastFitIndex=i;
}
temperature[leastFitIndex]=temperature[tb_Rnd(0,kMaxFlowers - 1)];
water[leastFitIndex]=water[tb_Rnd(0,kMaxFlowers - 1)];
sunlight[leastFitIndex]=sunlight[tb_Rnd(0,kMaxFlowers - 1)];
nutrient[leastFitIndex]=nutrient[tb_Rnd(0,kMaxFlowers - 1)];
beneficialInsect[leastFitIndex]=beneficialInsect[tb_Rnd(0,kMaxFlowers - 1)];
harmfulInsect[leastFitIndex]=harmfulInsect[tb_Rnd(0,kMaxFlowers - 1)];
for
(i=0;i<kMaxFlowers;i++)
{
fitTemperature[i]=temperature[tb_Rnd(0,kMaxFlowers - 1)];
fitWater[i]=water[tb_Rnd(0,kMaxFlowers - 1)];
fitSunlight[i]=sunlight[tb_Rnd(0,kMaxFlowers - 1)];
fitNutrient[i]=nutrient[tb_Rnd(0,kMaxFlowers - 1)];
fitBeneficialInsect[i]=beneficialInsect[tb_Rnd(0,kMaxFlowers - 1)];
fitHarmfulInsect[i]=harmfulInsect[tb_Rnd(0,kMaxFlowers - 1)];
}
for
(i=0;i<kMaxFlowers;i++)
{
temperature[i]=fitTemperature[i];
water[i]=fitWater[i];
sunlight[i]=fitSunlight[i];
nutrient[i]=fitNutrient[i];
beneficialInsect[i]=fitBeneficialInsect[i];
harmfulInsect[i]=fitHarmfulInsect[i];
}
for
(i=0;i<kMaxFlowers;i++)
{
if
(tb_Rnd(1,100)==1)
temperature[i]=tb_Rnd(1,75);
if
(tb_Rnd(1,100)==1)
water[i]=tb_Rnd(1,75);
if
(tb_Rnd(1,100)==1)
sunlight[i]=tb_Rnd(1,75);
if
(tb_Rnd(1,100)==1)
nutrient[i]=tb_Rnd(1,75);
if
(tb_Rnd(1,100)==1)
beneficialInsect[i]=tb_Rnd(1,75);
if
(tb_Rnd(1,100)==1)
harmfulInsect[i]=tb_Rnd(1,75);
}
}
void
ai_World::show()
{
// cout << "/t temperature water sunlight nutrient beneficialInsect harmfulInsect/n";
cout <<
"current/t "
<< currentTemperature <<
"/t "
<< currentWater <<
"/t "
;
cout << currentSunlight <<
"/t "
<< currentNutrient <<
"/t "
;
cout << currentBeneficialInsect <<
"/t "
<< currentHarmfulInsect <<
"/n"
;
for
(
int
i=0;i<kMaxFlowers;i++)
{
cout <<
"Flower "
<< i <<
": "
;
cout << temperature[i] <<
"/t "
;
cout << water[i] <<
"/t "
;
cout << sunlight[i] <<
"/t "
;
cout << nutrient[i] <<
"/t "
;
cout << beneficialInsect[i] <<
"/t "
;
cout << harmfulInsect[i] <<
"/t "
;
cout << endl;
}
}
#endif // AIWORLD_H_
//test.cpp
#include <iostream>
#include "ai_World.h"
using
namespace
std;
int
main()
{
ai_World a;
a.Encode();
// a.show();
for
(
int
i = 0; i < 10; i++)
{
cout <<
"Generation "
<< i << endl;
a.Evolve();
a.show();
}
system
(
"PAUSE"
);
return
0;
}
|
希望本文所述对大家的C++程序设计有所帮助.
最后此篇关于C++实现遗传算法的文章就讲到这里了,如果你想了解更多关于C++实现遗传算法的内容请搜索CFSDN的文章或继续浏览相关文章,希望大家以后支持我的博客! 。
#include using namespace std; class C{ private: int value; public: C(){ value = 0;
这个问题已经有答案了: What is the difference between char a[] = ?string?; and char *p = ?string?;? (8 个回答) 已关闭
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 7 年前。 此帖子已于 8 个月
除了调试之外,是否有任何针对 c、c++ 或 c# 的测试工具,其工作原理类似于将独立函数复制粘贴到某个文本框,然后在其他文本框中输入参数? 最佳答案 也许您会考虑单元测试。我推荐你谷歌测试和谷歌模拟
我想在第二台显示器中移动一个窗口 (HWND)。问题是我尝试了很多方法,例如将分辨率加倍或输入负值,但它永远无法将窗口放在我的第二台显示器上。 关于如何在 C/C++/c# 中执行此操作的任何线索 最
我正在寻找 C/C++/C## 中不同类型 DES 的现有实现。我的运行平台是Windows XP/Vista/7。 我正在尝试编写一个 C# 程序,它将使用 DES 算法进行加密和解密。我需要一些实
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 1
有没有办法强制将另一个 窗口置于顶部? 不是应用程序的窗口,而是另一个已经在系统上运行的窗口。 (Windows, C/C++/C#) 最佳答案 SetWindowPos(that_window_ha
假设您可以在 C/C++ 或 Csharp 之间做出选择,并且您打算在 Windows 和 Linux 服务器上运行同一服务器的多个实例,那么构建套接字服务器应用程序的最明智选择是什么? 最佳答案 如
你们能告诉我它们之间的区别吗? 顺便问一下,有什么叫C++库或C库的吗? 最佳答案 C++ 标准库 和 C 标准库 是 C++ 和 C 标准定义的库,提供给 C++ 和 C 程序使用。那是那些词的共同
下面的测试代码,我将输出信息放在注释中。我使用的是 gcc 4.8.5 和 Centos 7.2。 #include #include class C { public:
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我的客户将使用名为 annoucement 的结构/类与客户通信。我想我会用 C++ 编写服务器。会有很多不同的类继承annoucement。我的问题是通过网络将这些类发送给客户端 我想也许我应该使用
我在 C# 中有以下函数: public Matrix ConcatDescriptors(IList> descriptors) { int cols = descriptors[0].Co
我有一个项目要编写一个函数来对某些数据执行某些操作。我可以用 C/C++ 编写代码,但我不想与雇主共享该函数的代码。相反,我只想让他有权在他自己的代码中调用该函数。是否可以?我想到了这两种方法 - 在
我使用的是编写糟糕的第 3 方 (C/C++) Api。我从托管代码(C++/CLI)中使用它。有时会出现“访问冲突错误”。这使整个应用程序崩溃。我知道我无法处理这些错误[如果指针访问非法内存位置等,
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 7 年前。
已关闭。此问题不符合Stack Overflow guidelines 。目前不接受答案。 要求我们推荐或查找工具、库或最喜欢的场外资源的问题对于 Stack Overflow 来说是偏离主题的,因为
我有一些 C 代码,将使用 P/Invoke 从 C# 调用。我正在尝试为这个 C 函数定义一个 C# 等效项。 SomeData* DoSomething(); struct SomeData {
这个问题已经有答案了: Why are these constructs using pre and post-increment undefined behavior? (14 个回答) 已关闭 6
我是一名优秀的程序员,十分优秀!