- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.<init>()
方法的一些代码示例,展示了WeightVector.<init>()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。WeightVector.<init>()
方法的具体详情如下:
包路径:edu.illinois.cs.cogcomp.sl.util.WeightVector
类名称:WeightVector
方法名:<init>
暂无
代码示例来源:origin: edu.illinois.cs.cogcomp/IllinoisSL-core
public InferenceThread(
AbstractInferenceSolver infSolver,
StructuredInstanceWithAlphas[] subset, WeightVector wv, int threadId, Parameters parameters) {
this.infSolver = infSolver;
this.alphaInsList = subset;
this.threadId = threadId;
this.wv = new WeightVector(wv);
this.parameters = parameters;
logger.trace("Thread:" + threadId + " handles "
+ subset.length + " instances!");
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
public InferenceThread(
AbstractInferenceSolver infSolver,
StructuredInstanceWithAlphas[] subset, WeightVector wv, int threadId, SLParameters parameters) {
this.infSolver = infSolver;
this.alphaInsList = subset;
this.threadId = threadId;
this.wv = new WeightVector(wv);
this.parameters = parameters;
logger.trace("Thread:" + threadId + " handles "
+ subset.length + " instances!");
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public InferenceThread(
AbstractInferenceSolver infSolver,
StructuredInstanceWithAlphas[] subset, WeightVector wv, int threadId, SLParameters parameters) {
this.infSolver = infSolver;
this.alphaInsList = subset;
this.threadId = threadId;
this.wv = new WeightVector(wv);
this.parameters = parameters;
logger.trace("Thread:" + threadId + " handles "
+ subset.length + " instances!");
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(SLProblem problem) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/IllinoisSL-core
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(StructuredProblem problem) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(SLProblem problem, SLParameters params) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, params, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
@Override
public WeightVector train(SLProblem sp) throws Exception {
return train(sp, new WeightVector(10000));
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(SLProblem problem, SLParameters params) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, params, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
@Override
public WeightVector train(SLProblem sp) throws Exception {
return train(sp, new WeightVector(10000));
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public WeightVector train(SLProblem problem) throws Exception {
return train(problem, new WeightVector(10000));
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(SLProblem problem) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public static WeightVector readFromFile(Lexiconer lm, String filepath) throws IOException {
List<String> lines = Files.readAllLines(Paths.get(filepath), Charset.defaultCharset());
float[] input = new float[lines.size()];
for(String line:lines)
{
String[] parts = line.split("\\s+");
assert parts.length==2 : "weight file corrupted";
String fstr = parts[0];
if(fstr.equals("null"))
continue;
float val = Float.parseFloat(parts[1]);
input[lm.getFeatureId(fstr)]=val;
}
WeightVector wv = new WeightVector(input);
return wv;
}
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
@Override
public void run(WeightVector w, AbstractInferenceSolver inference)
throws Exception {
float [] array = new float[w.getInternalArray().length];
for(int i=0 ;i< array.length;i++)
array[i] = w.getInternalArray()[i];
WeightVector wv = new WeightVector(array);
wvList.add(wv);
runningTime.add(System.currentTimeMillis() - startTime);
}
public void postEvaluation(SLProblem sp, AbstractInferenceSolver infSolver) throws Exception{
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
public static WeightVector readFromFile(Lexiconer lm, String filepath) throws FileNotFoundException {
List<String> lines = LineIO.read(filepath);
float[] input = new float[lines.size()];
for(String line:lines)
{
String[] parts = line.split("\\s+");
assert parts.length==2 : "weight file corrupted";
String fstr = parts[0];
if(fstr.equals("null"))
continue;
float val = Float.parseFloat(parts[1]);
input[lm.getFeatureId(fstr)]=val;
}
WeightVector wv = new WeightVector(input);
return wv;
}
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public static WeightVector load(String fileName) {
try {
GZIPInputStream zipin = new GZIPInputStream(new FileInputStream(fileName));
BufferedReader reader = new BufferedReader(new InputStreamReader(zipin));
String line;
line = reader.readLine().trim();
if (!line.equals("WeightVector")) {
reader.close();
throw new IOException("Invalid model file.");
}
line = reader.readLine().trim();
int size = Integer.parseInt(line);
WeightVector w = new WeightVector(size);
while ((line = reader.readLine()) != null) {
line = line.trim();
String[] parts = line.split(":");
int index = Integer.parseInt(parts[0]);
float value = Float.parseFloat(parts[1]);
w.setElement(index, value);
}
zipin.close();
return w;
} catch (Exception e) {
log.error("Error loading model file {}", fileName);
System.exit(-1);
}
return null;
}
代码示例来源:origin: CogComp/cogcomp-nlp
public static WeightVector load(String fileName) {
try {
GZIPInputStream zipin = new GZIPInputStream(new FileInputStream(fileName));
BufferedReader reader = new BufferedReader(new InputStreamReader(zipin));
String line;
line = reader.readLine().trim();
if (!line.equals("WeightVector")) {
reader.close();
throw new IOException("Invalid model file.");
}
line = reader.readLine().trim();
int size = Integer.parseInt(line);
WeightVector w = new WeightVector(size);
while ((line = reader.readLine()) != null) {
line = line.trim();
String[] parts = line.split(":");
int index = Integer.parseInt(parts[0]);
float value = Float.parseFloat(parts[1]);
w.setElement(index, value);
}
zipin.close();
return w;
} catch (Exception e) {
log.error("Error loading model file {}", fileName);
System.exit(-1);
}
return null;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* The function for the users to call for the structured SVM
*
* @param sp
* Structured Labeled Dataset
* @param params
* parameters
* @return
* @throws Exception
*/
@Override
public WeightVector train(final SLProblem sp, SLParameters params) throws Exception {
WeightVector wv = null;
// +1 because wv.u[0] stores the bias term
if(params.TOTAL_NUMBER_FEATURE >0){
wv = new WeightVector(params.TOTAL_NUMBER_FEATURE + 1);
wv.setExtendable(false);
} else {
wv = new WeightVector(8192);
wv.setExtendable(true);
}
return train(sp,params,wv);
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
@Deprecated
public static WeightVector getWeightVectorBySumAlpahFv(
StructuredInstanceWithAlphas[] alphaInsList, boolean isExtendable,
int numIns) {
int numFeatures = -1;
for (int i = 0; i < numIns; i++) {
int currentMaxIdx = alphaInsList[i].getMaxIdx();
if (currentMaxIdx > numFeatures)
numFeatures = currentMaxIdx;
}
logger.info("number of features: " + numFeatures);
WeightVector currentWv = new WeightVector(numFeatures + 1);
currentWv.setExtendable(isExtendable);
// float[] cur_w = new float[max_n + 1];
for (int i = 0; i < numIns; i++) {
alphaInsList[i].fillWeightVector(currentWv);
}
return currentWv;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/IllinoisSL-core
@Deprecated
public static WeightVector getWeightVectorBySumAlpahFv(
StructuredInstanceWithAlphas[] alphaInsList, boolean isExtendable,
int numIns) {
int numFeatures = -1;
for (int i = 0; i < numIns; i++) {
int currentMaxIdx = alphaInsList[i].getMaxIdx();
if (currentMaxIdx > numFeatures)
numFeatures = currentMaxIdx;
}
logger.info("number of features: " + numFeatures);
WeightVector currentWv = new WeightVector(numFeatures + 1);
currentWv.setExtendable(isExtendable);
// float[] cur_w = new float[max_n + 1];
for (int i = 0; i < numIns; i++) {
alphaInsList[i].fillWeightVector(currentWv);
}
return currentWv;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
@Deprecated
public static WeightVector getWeightVectorBySumAlpahFv(
StructuredInstanceWithAlphas[] alphaInsList, boolean isExtendable,
int numIns) {
int numFeatures = -1;
for (int i = 0; i < numIns; i++) {
int currentMaxIdx = alphaInsList[i].getMaxIdx();
if (currentMaxIdx > numFeatures)
numFeatures = currentMaxIdx;
}
logger.info("number of features: " + numFeatures);
WeightVector currentWv = new WeightVector(numFeatures + 1);
currentWv.setExtendable(isExtendable);
// float[] cur_w = new float[max_n + 1];
for (int i = 0; i < numIns; i++) {
alphaInsList[i].fillWeightVector(currentWv);
}
return currentWv;
}
何时使用 init、带参数的 init 或 iOS 8 (Swift) 中的便利 init, Objective-C 中的 convenience init 等价于什么? 最佳答案 你的类将有一个必需
我正在阅读这个 First Search Program - Artificial Intelligence for Robotics 算法,我正在阅读它的 Python 代码。在这里,我们创建了一个
我觉得答案很明显,但我一直无法弄清楚,这对我来说似乎是一个反复出现的问题。基本上我想做这样的事情: extension NSData { convenience init(JSONObject
cloud-init 是在首次启动时在虚拟机上执行各种配置的包。您必须使用您的配置配置一个文件,然后将其扔到您的 VM 上,然后对其进行虚拟化。 但它究竟是如何工作的呢?用户数据如何发送到 VM,cl
我目前正在与 CoreOS 打交道,到目前为止,我认为我已经掌握了总体思路和概念。我还没有得到的一件事是执行 cloud-init . 我明白 cloud-init是一个为 CoreOS 做一些配置的
部署项目后,当客户端第一次向 TestServlet 发送请求时,服务器会创建 testServlet 对象,然后调用第一个 init() 方法(init(ServletConfig config))
是否有可能在 convenience init 中以某种方式解包可选 init? convenience init(...) { self.init?(...) ?? self.init() }
使用时 write_files使用 cloud-init,是否可以附加内容?如果是这样,如何? write_files: [ { "path": "/home/user/some-file
我对 Ansible 比较陌生,我创建了一个剧本,可以在“裸”服务器上安装 Tomcat 配置。我想知道如何解决能够更新 init.d 脚本的问题,同时避免在脚本没有更改时在剧本开始时停止服务。这是基
我打算在 iOS 中使用参数调用 init 方法中的默认 init 方法。像这样: -(id)init{ self = [super init]; if (self) {
Objective C 规范(来自 Apple)第 49 页指出每个声明实例变量的类都必须提供一个 init 方法来初始化它们 我的问题 -为什么这是必要的? NSObject 不会为实例初始化 iV
所以我有一个带有指定初始化器的类,它为每个存储的属性取值。我所有存储的属性也有一个默认值,所以我假设这个类有一个默认的初始化。 在我指定的 init 中,我调用 super.init() 问题是,如果
我对此有些困惑: class Person { var name: String var age: Int init(){ name = “Tim”
我有一个带有两个初始化方法的对象。其中一个接受 NSDictionary,另一个接受一大堆 String 变量。我想调用 NSDictionary init,然后从那里将我的字典转换为字符串,然后用我
我正在尝试为我的类创建一个方便的初始化:User。我之前为另一个类(class)做过这个,并且 - 再次创建它 - 我使用了相同的代码,只是我的用户类(class)有所不同。 这是我的用户类: imp
我已经通读了以下秘诀,它展示了一种使用 Google Cloud Endpoints 后端为 AngularJS 前端提供动力的方法: https://cloud.google.com/resourc
本文整理了Java中com.netflix.zuul.init.ZuulFiltersModule.()方法的一些代码示例,展示了ZuulFiltersModule.()的具体用法。这些代码示例主要来
我想实现一个 初始化 下功能 box.once() 在 Tarantool 中只执行一次,但是,只有在 时才对我有用初始化 已成功执行。 问题 : 如何使“onceinit”记录只有在 init 成功
如果在Xcode中创建新的游戏模板项目,则默认GameViewController将使用以下初始化程序实例化游戏场景: let scene = SKScene(fileNamed: "GameScen
我有一个 MKPolyline我要实现的 subblas NSCoding , IE。 @interface RSRoutePolyline : MKPolyline I asked a quest
我是一名优秀的程序员,十分优秀!