- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.<init>()
方法的一些代码示例,展示了WeightVector.<init>()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。WeightVector.<init>()
方法的具体详情如下:
包路径:edu.illinois.cs.cogcomp.sl.util.WeightVector
类名称:WeightVector
方法名:<init>
暂无
代码示例来源:origin: edu.illinois.cs.cogcomp/IllinoisSL-core
public InferenceThread(
AbstractInferenceSolver infSolver,
StructuredInstanceWithAlphas[] subset, WeightVector wv, int threadId, Parameters parameters) {
this.infSolver = infSolver;
this.alphaInsList = subset;
this.threadId = threadId;
this.wv = new WeightVector(wv);
this.parameters = parameters;
logger.trace("Thread:" + threadId + " handles "
+ subset.length + " instances!");
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
public InferenceThread(
AbstractInferenceSolver infSolver,
StructuredInstanceWithAlphas[] subset, WeightVector wv, int threadId, SLParameters parameters) {
this.infSolver = infSolver;
this.alphaInsList = subset;
this.threadId = threadId;
this.wv = new WeightVector(wv);
this.parameters = parameters;
logger.trace("Thread:" + threadId + " handles "
+ subset.length + " instances!");
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public InferenceThread(
AbstractInferenceSolver infSolver,
StructuredInstanceWithAlphas[] subset, WeightVector wv, int threadId, SLParameters parameters) {
this.infSolver = infSolver;
this.alphaInsList = subset;
this.threadId = threadId;
this.wv = new WeightVector(wv);
this.parameters = parameters;
logger.trace("Thread:" + threadId + " handles "
+ subset.length + " instances!");
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(SLProblem problem) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/IllinoisSL-core
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(StructuredProblem problem) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(SLProblem problem, SLParameters params) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, params, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
@Override
public WeightVector train(SLProblem sp) throws Exception {
return train(sp, new WeightVector(10000));
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(SLProblem problem, SLParameters params) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, params, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
@Override
public WeightVector train(SLProblem sp) throws Exception {
return train(sp, new WeightVector(10000));
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public WeightVector train(SLProblem problem) throws Exception {
return train(problem, new WeightVector(10000));
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* To train with the default choice(zero vector) of initial weight vector.
* Often this suffices.
* @param problem The structured problem on which the perceptron should be trained
* @return w The weight vector learnt from the training
* @throws Exception
*/
@Override
public WeightVector train(SLProblem problem) throws Exception {
WeightVector init = new WeightVector(10000);
return train(problem, init);
}
/**
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public static WeightVector readFromFile(Lexiconer lm, String filepath) throws IOException {
List<String> lines = Files.readAllLines(Paths.get(filepath), Charset.defaultCharset());
float[] input = new float[lines.size()];
for(String line:lines)
{
String[] parts = line.split("\\s+");
assert parts.length==2 : "weight file corrupted";
String fstr = parts[0];
if(fstr.equals("null"))
continue;
float val = Float.parseFloat(parts[1]);
input[lm.getFeatureId(fstr)]=val;
}
WeightVector wv = new WeightVector(input);
return wv;
}
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
@Override
public void run(WeightVector w, AbstractInferenceSolver inference)
throws Exception {
float [] array = new float[w.getInternalArray().length];
for(int i=0 ;i< array.length;i++)
array[i] = w.getInternalArray()[i];
WeightVector wv = new WeightVector(array);
wvList.add(wv);
runningTime.add(System.currentTimeMillis() - startTime);
}
public void postEvaluation(SLProblem sp, AbstractInferenceSolver infSolver) throws Exception{
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
public static WeightVector readFromFile(Lexiconer lm, String filepath) throws FileNotFoundException {
List<String> lines = LineIO.read(filepath);
float[] input = new float[lines.size()];
for(String line:lines)
{
String[] parts = line.split("\\s+");
assert parts.length==2 : "weight file corrupted";
String fstr = parts[0];
if(fstr.equals("null"))
continue;
float val = Float.parseFloat(parts[1]);
input[lm.getFeatureId(fstr)]=val;
}
WeightVector wv = new WeightVector(input);
return wv;
}
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public static WeightVector load(String fileName) {
try {
GZIPInputStream zipin = new GZIPInputStream(new FileInputStream(fileName));
BufferedReader reader = new BufferedReader(new InputStreamReader(zipin));
String line;
line = reader.readLine().trim();
if (!line.equals("WeightVector")) {
reader.close();
throw new IOException("Invalid model file.");
}
line = reader.readLine().trim();
int size = Integer.parseInt(line);
WeightVector w = new WeightVector(size);
while ((line = reader.readLine()) != null) {
line = line.trim();
String[] parts = line.split(":");
int index = Integer.parseInt(parts[0]);
float value = Float.parseFloat(parts[1]);
w.setElement(index, value);
}
zipin.close();
return w;
} catch (Exception e) {
log.error("Error loading model file {}", fileName);
System.exit(-1);
}
return null;
}
代码示例来源:origin: CogComp/cogcomp-nlp
public static WeightVector load(String fileName) {
try {
GZIPInputStream zipin = new GZIPInputStream(new FileInputStream(fileName));
BufferedReader reader = new BufferedReader(new InputStreamReader(zipin));
String line;
line = reader.readLine().trim();
if (!line.equals("WeightVector")) {
reader.close();
throw new IOException("Invalid model file.");
}
line = reader.readLine().trim();
int size = Integer.parseInt(line);
WeightVector w = new WeightVector(size);
while ((line = reader.readLine()) != null) {
line = line.trim();
String[] parts = line.split(":");
int index = Integer.parseInt(parts[0]);
float value = Float.parseFloat(parts[1]);
w.setElement(index, value);
}
zipin.close();
return w;
} catch (Exception e) {
log.error("Error loading model file {}", fileName);
System.exit(-1);
}
return null;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* The function for the users to call for the structured SVM
*
* @param sp
* Structured Labeled Dataset
* @param params
* parameters
* @return
* @throws Exception
*/
@Override
public WeightVector train(final SLProblem sp, SLParameters params) throws Exception {
WeightVector wv = null;
// +1 because wv.u[0] stores the bias term
if(params.TOTAL_NUMBER_FEATURE >0){
wv = new WeightVector(params.TOTAL_NUMBER_FEATURE + 1);
wv.setExtendable(false);
} else {
wv = new WeightVector(8192);
wv.setExtendable(true);
}
return train(sp,params,wv);
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
@Deprecated
public static WeightVector getWeightVectorBySumAlpahFv(
StructuredInstanceWithAlphas[] alphaInsList, boolean isExtendable,
int numIns) {
int numFeatures = -1;
for (int i = 0; i < numIns; i++) {
int currentMaxIdx = alphaInsList[i].getMaxIdx();
if (currentMaxIdx > numFeatures)
numFeatures = currentMaxIdx;
}
logger.info("number of features: " + numFeatures);
WeightVector currentWv = new WeightVector(numFeatures + 1);
currentWv.setExtendable(isExtendable);
// float[] cur_w = new float[max_n + 1];
for (int i = 0; i < numIns; i++) {
alphaInsList[i].fillWeightVector(currentWv);
}
return currentWv;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/IllinoisSL-core
@Deprecated
public static WeightVector getWeightVectorBySumAlpahFv(
StructuredInstanceWithAlphas[] alphaInsList, boolean isExtendable,
int numIns) {
int numFeatures = -1;
for (int i = 0; i < numIns; i++) {
int currentMaxIdx = alphaInsList[i].getMaxIdx();
if (currentMaxIdx > numFeatures)
numFeatures = currentMaxIdx;
}
logger.info("number of features: " + numFeatures);
WeightVector currentWv = new WeightVector(numFeatures + 1);
currentWv.setExtendable(isExtendable);
// float[] cur_w = new float[max_n + 1];
for (int i = 0; i < numIns; i++) {
alphaInsList[i].fillWeightVector(currentWv);
}
return currentWv;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
@Deprecated
public static WeightVector getWeightVectorBySumAlpahFv(
StructuredInstanceWithAlphas[] alphaInsList, boolean isExtendable,
int numIns) {
int numFeatures = -1;
for (int i = 0; i < numIns; i++) {
int currentMaxIdx = alphaInsList[i].getMaxIdx();
if (currentMaxIdx > numFeatures)
numFeatures = currentMaxIdx;
}
logger.info("number of features: " + numFeatures);
WeightVector currentWv = new WeightVector(numFeatures + 1);
currentWv.setExtendable(isExtendable);
// float[] cur_w = new float[max_n + 1];
for (int i = 0; i < numIns; i++) {
alphaInsList[i].fillWeightVector(currentWv);
}
return currentWv;
}
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.setDenseVector()方法的一些代码示例,展示了WeightVector.set
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.getInternalArray()方法的一些代码示例,展示了WeightVector.g
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.addSparseFeatureVector()方法的一些代码示例,展示了WeightVe
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.scale()方法的一些代码示例,展示了WeightVector.scale()的具体用法
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.setElement()方法的一些代码示例,展示了WeightVector.setElem
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.get()方法的一些代码示例,展示了WeightVector.get()的具体用法。这些代
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.()方法的一些代码示例,展示了WeightVector.()的具体用法。这些代码示例主要来
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.getLength()方法的一些代码示例,展示了WeightVector.getLengt
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.setExtendable()方法的一些代码示例,展示了WeightVector.setE
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.getSquareL2Norm()方法的一些代码示例,展示了WeightVector.ge
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.addDenseVector()方法的一些代码示例,展示了WeightVector.add
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.getWeightArray()方法的一些代码示例,展示了WeightVector.get
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.dotProduct()方法的一些代码示例,展示了WeightVector.dotProd
我是一名优秀的程序员,十分优秀!