gpt4 book ai didi

org.jfree.data.xy.XYIntervalSeries.()方法的使用及代码示例

转载 作者:知者 更新时间:2024-03-25 05:13:05 30 4
gpt4 key购买 nike

本文整理了Java中org.jfree.data.xy.XYIntervalSeries.<init>()方法的一些代码示例,展示了XYIntervalSeries.<init>()的具体用法。这些代码示例主要来源于Github/Stackoverflow/Maven等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。XYIntervalSeries.<init>()方法的具体详情如下:
包路径:org.jfree.data.xy.XYIntervalSeries
类名称:XYIntervalSeries
方法名:<init>

XYIntervalSeries.<init>介绍

[英]Creates a new empty series. By default, items added to the series will be sorted into ascending order by x-value, and duplicate x-values will be allowed (these defaults can be modified with another constructor).
[中]创建一个新的空序列。默认情况下,添加到序列中的项目将按x值按升序排序,并且允许重复x值(可以使用其他构造函数修改这些默认值)。

代码示例

代码示例来源:origin: kiegroup/optaplanner

k -> new XYIntervalSeries(moveType));
double yValue = levelValues[i];

代码示例来源:origin: kiegroup/optaplanner

k -> new XYIntervalSeries(moveType));
double yValue = levelValues[i];

代码示例来源:origin: kiegroup/optaplanner

int seriesIndex = 0;
for (SingleBenchmarkResult singleBenchmarkResult : problemBenchmarkResult.getSingleBenchmarkResultList()) {
  XYIntervalSeries series = new XYIntervalSeries(singleBenchmarkResult.getSolverBenchmarkResult().getNameWithFavoriteSuffix());
  XYItemRenderer renderer = new YIntervalRenderer();
  if (singleBenchmarkResult.hasAllSuccess()) {

代码示例来源:origin: org.openfuxml/ofx-wiki

if(lDataSets!=null && lDataSets.size()>0)
  XYIntervalSeries  series = new XYIntervalSeries(i);
  for(int j=1;j<=lDataSets.size();j++)

代码示例来源:origin: org.codehaus.jtstand/jtstand-ui

String groupName = it2.next();
int[] population = map.get(groupName);
XYIntervalSeries pop = new XYIntervalSeries(groupName);
if (inverted) {
  for (int i = numberOfCategories - 1; i >= 0; i--) {

代码示例来源:origin: bcdev/beam

private XYIntervalSeries computeRegressionData(double xStart, double xEnd) {
  if (scatterpointsDataset.getItemCount(0) > 1) {
    final double[] coefficients = Regression.getOLSRegression(scatterpointsDataset, 0);
    final Function2D curve = new LineFunction2D(coefficients[0], coefficients[1]);
    final XYSeries regressionData = DatasetUtilities.sampleFunction2DToSeries(
        curve, xStart, xEnd, 100, "regression line");
    final XYIntervalSeries xyIntervalRegression = new XYIntervalSeries(regressionData.getKey());
    final List<XYDataItem> regressionDataItems = regressionData.getItems();
    for (XYDataItem item : regressionDataItems) {
      final double x = item.getXValue();
      final double y = item.getYValue();
      xyIntervalRegression.add(x, x, x, y, y, y);
    }
    return xyIntervalRegression;
  } else {
    JOptionPane.showMessageDialog(this, "Unable to compute regression line.\n" +
                      "At least 2 values are needed to compute regression coefficients.");
    return null;
  }
}

代码示例来源:origin: stackoverflow.com

series[i] = new XYIntervalSeries(states[i]);
dataset.addSeries(series[i]);

代码示例来源:origin: bcdev/beam

private XYIntervalSeries computeAcceptableDeviationData(double lowerBound, double upperBound) {
  final Function2D identityFunction = new Function2D() {
    @Override
    public double getValue(double x) {
      return x;
    }
  };
  final XYSeries identity = DatasetUtilities.sampleFunction2DToSeries(identityFunction, lowerBound, upperBound,
                                    100, "1:1 line");
  final XYIntervalSeries xyIntervalSeries = new XYIntervalSeries(identity.getKey());
  final List<XYDataItem> items = identity.getItems();
  for (XYDataItem item : items) {
    final double x = item.getXValue();
    final double y = item.getYValue();
    if (scatterPlotModel.showAcceptableDeviation) {
      final double acceptableDeviation = scatterPlotModel.acceptableDeviationInterval;
      final double xOff = acceptableDeviation * x / 100;
      final double yOff = acceptableDeviation * y / 100;
      xyIntervalSeries.add(x, x - xOff, x + xOff, y, y - yOff, y + yOff);
    } else {
      xyIntervalSeries.add(x, x, x, y, y, y);
    }
  }
  return xyIntervalSeries;
}

代码示例来源:origin: senbox-org/snap-desktop

private XYIntervalSeries computeAcceptableDeviationData(double lowerBound, double upperBound) {
  final XYSeries identity = DatasetUtilities.sampleFunction2DToSeries(x -> x, lowerBound, upperBound, 100, "1:1 line");
  final XYIntervalSeries xyIntervalSeries = new XYIntervalSeries(identity.getKey());
  for (int i = 0; i < identity.getItemCount(); i++) {
    XYDataItem item = identity.getDataItem(i);
    final double x = item.getXValue();
    final double y = item.getYValue();
    if (scatterPlotModel.showAcceptableDeviation) {
      final double acceptableDeviation = scatterPlotModel.acceptableDeviationInterval;
      final double xOff = acceptableDeviation * x / 100;
      final double yOff = acceptableDeviation * y / 100;
      xyIntervalSeries.add(x, x - xOff, x + xOff, y, y - yOff, y + yOff);
    } else {
      xyIntervalSeries.add(x, x, x, y, y, y);
    }
  }
  return xyIntervalSeries;
}

代码示例来源:origin: bcdev/beam

final float[] sampleValues = profileData.getSampleValues();
final float[] sampleSigmas = profileData.getSampleSigmas();
XYIntervalSeries series = new XYIntervalSeries(getRaster() != null ? getRaster().getName() : DEFAULT_SAMPLE_DATASET_NAME);
for (int x = 0; x < sampleValues.length; x++) {
  final float y = sampleValues[x];
    && dataSourceConfig.dataField != null) {
  XYIntervalSeries corrSeries = new XYIntervalSeries(getCorrelativeDataLabel(dataSourceConfig.pointDataSource, dataSourceConfig.dataField));
  int[] shapeVertexIndexes = profileData.getShapeVertexIndexes();
  SimpleFeature[] simpleFeatures = dataSourceConfig.pointDataSource.getFeatureCollection().toArray(new SimpleFeature[0]);

代码示例来源:origin: senbox-org/snap-desktop

final float[] sampleValues = profileData.getSampleValues();
final float[] sampleSigmas = profileData.getSampleSigmas();
XYIntervalSeries series = new XYIntervalSeries(getRaster() != null ? getRaster().getName() : DEFAULT_SAMPLE_DATASET_NAME);
for (int x = 0; x < sampleValues.length; x++) {
  final float y = sampleValues[x];
    && dataSourceConfig.dataField != null) {
  XYIntervalSeries corrSeries = new XYIntervalSeries(
      StatisticChartStyling.getCorrelativeDataLabel(dataSourceConfig.pointDataSource, dataSourceConfig.dataField));
  int[] shapeVertexIndexes = profileData.getShapeVertexIndexes();

代码示例来源:origin: senbox-org/snap-desktop

private XYIntervalSeries computeRegressionData(double xStart, double xEnd) {
  if (scatterpointsDataset.getItemCount(0) > 1) {
    final double[] coefficients = Regression.getOLSRegression(scatterpointsDataset, 0);
    final Function2D curve = new LineFunction2D(coefficients[0], coefficients[1]);
    final XYSeries regressionData = DatasetUtilities.sampleFunction2DToSeries(curve, xStart, xEnd, 100, "regression line");
    final XYIntervalSeries xyIntervalRegression = new XYIntervalSeries(regressionData.getKey());
    for (int i = 0; i < regressionData.getItemCount(); i++) {
      XYDataItem item = regressionData.getDataItem(i);
      final double x = item.getXValue();
      final double y = item.getYValue();
      xyIntervalRegression.add(x, x, x, y, y, y);
    }
    return xyIntervalRegression;
  } else {
    Dialogs.showInformation("Unable to compute regression line.\n" +
                    "At least 2 values are needed to compute regression coefficients.");
    return null;
  }
}

代码示例来源:origin: bcdev/beam

final XYIntervalSeries scatterValues = new XYIntervalSeries(getCorrelativeDataName());
for (ComputedData computedData : computedDatas) {
  final float rasterMean = computedData.rasterMean;

代码示例来源:origin: senbox-org/snap-desktop

final XYIntervalSeries scatterValues = new XYIntervalSeries(getCorrelativeDataName());
for (ComputedData computedData : computedDatas) {
  final float rasterMean = computedData.rasterMean;

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com