- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector
类的一些代码示例,展示了WeightVector
类的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。WeightVector
类的具体详情如下:
包路径:edu.illinois.cs.cogcomp.sl.util.WeightVector
类名称:WeightVector
[英]The weight vector
[中]权重向量
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/***
* Computes wv^T\phi(x,y).
* Override this function if you have a faster implementation for computing
* wv^T\phi(x,y).
* @param wv
* @param x
* @param y
* @return
*/
public float decisionValue(WeightVector wv, IInstance x, IStructure y) {
return wv.dotProduct(getFeatureVector(x, y));
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-srl
public static WeightVector load(String fileName) {
try {
GZIPInputStream zipin = new GZIPInputStream(new FileInputStream(fileName));
BufferedReader reader = new BufferedReader(new InputStreamReader(zipin));
String line;
line = reader.readLine().trim();
if (!line.equals("WeightVector")) {
reader.close();
throw new IOException("Invalid model file.");
}
line = reader.readLine().trim();
int size = Integer.parseInt(line);
WeightVector w = new WeightVector(size);
while ((line = reader.readLine()) != null) {
line = line.trim();
String[] parts = line.split(":");
int index = Integer.parseInt(parts[0]);
float value = Float.parseFloat(parts[1]);
w.setElement(index, value);
}
zipin.close();
return w;
} catch (Exception e) {
log.error("Error loading model file {}", fileName);
System.exit(-1);
}
return null;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public void run(){
// collect results
wv.empty();
for (int i = 0; i < n_thread; i++) {
wv.addDenseVector(inf_runner_list[i].wv);
}
wv.scale(1.0 / (double) n_thread);
for (int i = 0; i < n_thread; i++) {
inf_runner_list[i].setWv(wv);
}
}
});
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
public static void printSparsity(WeightVector wv) {
int nzeroes=0;
System.out.println("SIZE: "+wv.getLength());
for(float f:wv.getInternalArray())
{
if(f!=0.0)
nzeroes++;
}
System.out.println("NZ values: "+nzeroes);
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
@Override
public void run(WeightVector w, AbstractInferenceSolver inference)
throws Exception {
float [] array = new float[w.getInternalArray().length];
for(int i=0 ;i< array.length;i++)
array[i] = w.getInternalArray()[i];
WeightVector wv = new WeightVector(array);
wvList.add(wv);
runningTime.add(System.currentTimeMillis() - startTime);
}
public void postEvaluation(SLProblem sp, AbstractInferenceSolver infSolver) throws Exception{
代码示例来源:origin: edu.illinois.cs.cogcomp/IllinoisSL-core
public InferenceThread(
AbstractInferenceSolver infSolver,
StructuredInstanceWithAlphas[] subset, WeightVector wv, int threadId, Parameters parameters) {
this.infSolver = infSolver;
this.alphaInsList = subset;
this.threadId = threadId;
this.wv = new WeightVector(wv);
this.parameters = parameters;
logger.trace("Thread:" + threadId + " handles "
+ subset.length + " instances!");
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* The function for the users to call for the structured SVM
*
* @param sp
* Structured Labeled Dataset
* @param params
* parameters
* @return
* @throws Exception
*/
@Override
public WeightVector train(final SLProblem sp, SLParameters params) throws Exception {
WeightVector wv = null;
// +1 because wv.u[0] stores the bias term
if(params.TOTAL_NUMBER_FEATURE >0){
wv = new WeightVector(params.TOTAL_NUMBER_FEATURE + 1);
wv.setExtendable(false);
} else {
wv = new WeightVector(8192);
wv.setExtendable(true);
}
return train(sp,params,wv);
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
float dot_product = wv.dotProduct(fv);
float xij_norm2 = fv.getSquareL2Norm();
float new_alpha = Math.max(alpha + step, 0);
alphaSum += (new_alpha - alpha);
wv.addSparseFeatureVector(fv, (new_alpha - alpha));
as.alpha = new_alpha;
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
float priorScore = wv.get(numOfEmissionFeatures * numOflabels + j);
float zeroOrderScore = wv.dotProduct(seq.baseFeatures[0], j*numOfEmissionFeatures)+
((gold !=null && j != goldLabeledSeq.tags[0])?1:0);
dpTable[0][j] = priorScore + zeroOrderScore;
float zeroOrderScore = wv.dotProduct(seq.baseFeatures[i], j*numOfEmissionFeatures)
+ ((gold!=null && j != goldLabeledSeq.tags[i])?1:0);
float candidateScore = dpTable[(i-1)%2][k] + wv.get(offset + (k * numOflabels + j));
if (candidateScore > bestScore) {
bestScore = candidateScore;
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
WeightVector avg = new WeightVector(10000);
WeightVector w = init;
/ 1000);
WeightVector a = new WeightVector(w);
a.addDenseVector(avg, -1.0f / (count));
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
IFeatureVector predictedFeatures = featureGenerator.getFeatureVector(example, prediction);
IFeatureVector update = goldFeatures.difference(predictedFeatures);
double loss_term = loss - w.dotProduct(update);
w.scale(1.0f-learningRate);
w.addSparseFeatureVector(update, 2*learningRate*params.C_FOR_STRUCTURE*loss_term);
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
struct_finder_list[i], featureGenerator, para);
inf_runner_list[i] = new StructPerceptronHandler(spLearner,
subProbs.get(i), new WeightVector(10000), para);
final WeightVector wv = new WeightVector(10000);
barrier = new CyclicBarrier(n_thread, new Runnable(){
public void run(){
wv.empty();
for (int i = 0; i < n_thread; i++) {
wv.addDenseVector(inf_runner_list[i].wv);
wv.scale(1.0 / (double) n_thread);
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
StructPerceptronHandler[] inf_runner_list = new StructPerceptronHandler[n_thread];
WeightVector wv = new WeightVector(10000);
long startTime = System.currentTimeMillis();
long trainTime = 0;
struct_finder_list[i], featureGenerator, para);
inf_runner_list[i] = new StructPerceptronHandler(spLearner,
subProbs.get(i), new WeightVector(wv, 0), para);
wv = new WeightVector(10000);
for (int i = 0; i < n_thread; i++) {
wv.addDenseVector(inf_runner_list[i].wv);
wv.scale(1.0 / (double) n_thread);
trainTime = System.currentTimeMillis() - startTime;
代码示例来源:origin: edu.illinois.cs.cogcomp/IllinoisSL-core
/**
* Get primal objective function value with respect to the weight vector wv
* @param sp
* @param wv
* @param infSolver
* @param C
* @return
* @throws Exception
*/
public static float getPrimalObjective(
StructuredProblem sp, WeightVector wv,
AbstractInferenceSolver infSolver, float C) throws Exception {
float obj = 0;
obj += wv.getSquareL2Norm() * 0.5;
List<IInstance> input_list = sp.instanceList;
List<IStructure> output_list = sp.goldStructureList;
for (int i = 0; i < input_list.size(); i++) {
IInstance ins = input_list.get(i);
IStructure gold_struct = output_list.get(i);
float sC= C;
Pair<IStructure, Float > res = infSolver
.getLossAugmentedBestStructure(wv, ins, gold_struct);
float loss = res.getSecond()
+ wv.dotProduct(res.getFirst().getFeatureVector())
- wv.dotProduct(gold_struct.getFeatureVector());
obj += sC * loss * loss;
}
return obj;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
public void setWv(WeightVector wv){
this.wv.setDenseVector(wv);
}
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
@Deprecated
protected void fillWeightVector(WeightVector w) {
for(AlphaStruct as: candidateAlphas){
w.addSparseFeatureVector(as.alphaFeactureVector, as.alpha);
}
}
@Deprecated
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl
protected static float getDualObjective(
StructuredInstanceWithAlphas[] alphaInsList, WeightVector wv) {
float obj = 0;
obj += wv.getSquareL2Norm() * 0.5;
for (int i = 0; i < alphaInsList.length; i++) {
StructuredInstanceWithAlphas instanceWithAlphas = alphaInsList[i];
float w_sum = instanceWithAlphas.getLossWeightAlphaSum();
float sum = instanceWithAlphas.alphaSum;
float C = instanceWithAlphas.getC();
obj -= w_sum;
obj += (1.0 / (4.0 * C)) * sum * sum;
}
return obj;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
/**
* Duplicate a weight vector
* @param wv
*/
public WeightVector(WeightVector wv) {
float in[] = wv.getInternalArray();
u = new float[in.length];
System.arraycopy(in, 0, u, 0, in.length);
size = in.length;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-verbsense
public static void save(String fileName, WeightVector wv) throws IOException {
BufferedOutputStream stream =
new BufferedOutputStream(new GZIPOutputStream(new FileOutputStream(fileName)));
BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(stream));
float[] w = wv.getWeightArray();
writer.write("WeightVector");
writer.newLine();
writer.write(w.length + "");
writer.newLine();
int numNonZero = 0;
for (int index = 0; index < w.length; index++) {
if (w[index] != 0) {
writer.write(index + ":" + w[index]);
writer.newLine();
numNonZero++;
}
}
writer.close();
log.info("Number of non zero weights: " + numNonZero);
}
代码示例来源:origin: edu.illinois.cs.cogcomp/illinois-sl-core
w.scale(1.0f-learningRate);
w.addSparseFeatureVector(update, 2*learningRate*params.C_FOR_STRUCTURE);
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.setDenseVector()方法的一些代码示例,展示了WeightVector.set
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.getInternalArray()方法的一些代码示例,展示了WeightVector.g
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.addSparseFeatureVector()方法的一些代码示例,展示了WeightVe
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.scale()方法的一些代码示例,展示了WeightVector.scale()的具体用法
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.setElement()方法的一些代码示例,展示了WeightVector.setElem
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.get()方法的一些代码示例,展示了WeightVector.get()的具体用法。这些代
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.()方法的一些代码示例,展示了WeightVector.()的具体用法。这些代码示例主要来
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.getLength()方法的一些代码示例,展示了WeightVector.getLengt
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.setExtendable()方法的一些代码示例,展示了WeightVector.setE
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.getSquareL2Norm()方法的一些代码示例,展示了WeightVector.ge
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.addDenseVector()方法的一些代码示例,展示了WeightVector.add
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.getWeightArray()方法的一些代码示例,展示了WeightVector.get
本文整理了Java中edu.illinois.cs.cogcomp.sl.util.WeightVector.dotProduct()方法的一些代码示例,展示了WeightVector.dotProd
我是一名优秀的程序员,十分优秀!