- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
雪中悍刀行兄弟们都看过了吗?感觉看了个寂寞,但又感觉还行,原谅我没看过原著小说~
豆瓣评分5.8,说明我还是没说错它的。
当然,这并不妨碍它波播放量嘎嘎上涨,半个月25亿播放,平均一集一个亿,就是每天只有一集有点难受。
我们今天就来采集一下它的弹幕,实现数据可视化,看看弹幕文化都输出了什么~
我们将它的弹幕先采集下来,保存到Excel表格~
首先安装一下这两个模块
requests # 发送网络请求
pandas as pd # 保存数据
不会安装模块移步主页看我置顶文章,有专门详细讲解安装模块问题。
import requests # 发送网络请求
import pandas as pd # 保存数据
headers = {
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36'
}
# 构建一个列表储存数据
data_list = []
for page in range(15, 1500, 30):
try:
url = f'https://mfm.video.qq.com/danmu?otype=json&target_id=7626435152%26vid%3Dp0041oidttf&session_key=0%2C174%2C1642248894×tamp={page}'
# 1. 发送网络请求
response = requests.get(url=url, headers=headers)
# 2. 获取数据 弹幕内容 <Response [200]>: 告诉我们响应成功
json_data = response.json()
# print(json_data)
# 3. 解析数据(筛选数据) 提取想要的一些内容 不想要的忽略掉
comments = json_data['comments']
for comment in comments:
data_dict = {}
data_dict['commentid'] = comment['commentid']
data_dict['content'] = comment['content']
data_dict['opername'] = comment['opername']
print(data_dict)
data_list.append(data_dict)
except:
pass
# 4. 保存数据 wps 默认以gbk的方式打开的
df = pd.DataFrame(data_list)
# 乱码, 指定编码 为 utf-8 或者是 gbk 或者 utf-8-sig
df.to_csv('data.csv', encoding='utf-8-sig', index=False)
数据到手了,咱们就开始制作词云图分析了。
这两个模块需要安装一下
jieba
pyecharts
import jieba
from pyecharts.charts import WordCloud
import pandas as pd
from pyecharts import options as opts
wordlist = []
data = pd.read_csv('data.csv')['content']
data
data_list = data.values.tolist()
data_str = ' '.join(data_list)
words = jieba.lcut(data_str)
for word in words:
if len(word) > 1:
wordlist.append({'word':word, 'count':1})
df = pd.DataFrame(wordlist)
dfword = df.groupby('word')['count'].sum()
dfword2 = dfword.sort_values(ascending=False)
dfword = df.groupby('word')['count'].sum()
dfword2 = dfword.sort_values(ascending=False)
dfword3['word'] = dfword3.index
dfword3
word = dfword3['word'].tolist()
count = dfword3['count'].tolist()
a = [list(z) for z in zip(word, count)]
c = (
WordCloud()
.add('', a, word_size_range=[10, 50], shape='circle')
.set_global_opts(title_opts=opts.TitleOpts(title="词云图"))
)
c.render_notebook()
词云图效果
可以看到,这条、暴富和最后三个评论数据最多,咱们看看统计数据。
所有步骤都在视频有详细讲解
Python爬虫+数据分析+数据可视化(分析《雪中悍刀行》弹幕)
弹幕和词云图都有了,没有视频就说不过去,代码我整出来了,大家可以自己去试试,我就不展示了,展示了你们就看不到了。
import requests
import re
from tqdm import tqdm
url = 'https://vd.l.qq.com/proxyhttp'
data = {
'adparam': "pf=in&ad_type=LD%7CKB%7CPVL&pf_ex=pc&url=https%3A%2F%2Fv.qq.com%2Fx%2Fcover%2Fmzc0020036ro0ux%2Fc004159c18o.html&refer=https%3A%2F%2Fv.qq.com%2Fx%2Fsearch%2F&ty=web&plugin=1.0.0&v=3.5.57&coverid=mzc0020036ro0ux&vid=c004159c18o&pt=&flowid=55e20b5f153b460e8de68e7a25ede1bc_10201&vptag=www_baidu_com%7Cx&pu=-1&chid=0&adaptor=2&dtype=1&live=0&resp_type=json&guid=58c04061fed6ba662bd7d4c4a7babf4f&req_type=1&from=0&appversion=1.0.171&uid=115600983&tkn=3ICG94Dn33DKf8LgTEl_Qw..<=qq&platform=10201&opid=03A0BB50713BC1C977C0F256056D2E36&atkn=75C3D1F2FFB4B3897DF78DB2CF27A207&appid=101483052&tpid=3&rfid=f4e2ed2359bc13aa3d87abb6912642cf_1642247026",
'buid': "vinfoad",
'vinfoparam': "spsrt=1&charge=1&defaultfmt=auto&otype=ojson&guid=58c04061fed6ba662bd7d4c4a7babf4f&flowid=55e20b5f153b460e8de68e7a25ede1bc_10201&platform=10201&sdtfrom=v1010&defnpayver=1&appVer=3.5.57&host=v.qq.com&ehost=https%3A%2F%2Fv.qq.com%2Fx%2Fcover%2Fmzc0020036ro0ux%2Fc004159c18o.html&refer=v.qq.com&sphttps=1&tm=1642255530&spwm=4&logintoken=%7B%22main_login%22%3A%22qq%22%2C%22openid%22%3A%2203A0BB50713BC1C977C0F256056D2E36%22%2C%22appid%22%3A%22101483052%22%2C%22access_token%22%3A%2275C3D1F2FFB4B3897DF78DB2CF27A207%22%2C%22vuserid%22%3A%22115600983%22%2C%22vusession%22%3A%223ICG94Dn33DKf8LgTEl_Qw..%22%7D&vid=c004159c18o&defn=&fhdswitch=0&show1080p=1&isHLS=1&dtype=3&sphls=2&spgzip=1&dlver=2&drm=32&hdcp=0&spau=1&spaudio=15&defsrc=1&encryptVer=9.1&cKey=1WuhcCc07Wp6JZEItZs_lpJX5WB4a2CdS8kEoQvxVaqtHEZQ1c_W6myJ8hQOnmDFHMUnGJTDNTvp2vPBr-xE-uhvZyEMY131vUh1H4pgCXe2Op8F_DerfPItmE508flzsHwnEERQEN_AluNDEH6IC8EOljLQ2VfW2sTdospNPlD9535CNT9iSo3cLRH93ogtX_OJeYNVWrDYS8b5t1pjAAuGkoYGNScB_8lMah6WVCJtO-Ygxs9f-BtA8o_vOrSIjG_VH7z0wWI3--x_AUNIsHEG9zgzglpES47qAUrvH-0706f5Jz35DBkQKl4XAh32cbzm4aSDFig3gLiesH-TyztJ3B01YYG7cwclU8WtX7G2Y6UGD4Z1z5rYoM5NpAQ7Yr8GBgYGBgZKAPma&fp2p=1&spadseg=3"
}
headers = {
'cookie': 'pgv_pvid=7300130020; tvfe_boss_uuid=242c5295a1cb156d; appuser=BF299CB445E3A324; RK=6izJ0rkfNn; ptcz=622f5bd082de70e3e6e9a077923b48f72600cafd5e4b1e585e5f418570fa30fe; ptui_loginuin=1321228067; luin=o3452264669; lskey=000100003e4c51dfb8abf410ca319e572ee445f5a77020ba69d109f47c2ab3d67e58bd099a40c2294c41dbd6; o_cookie=3452264669; uid=169583373; fqm_pvqid=89ea2cc7-6806-4091-989f-5bc2f2cdea5c; fqm_sessionid=7fccc616-7386-4dd4-bba5-26396082df8d; pgv_info=ssid=s2517394073; _qpsvr_localtk=0.13663981383113954; login_type=2; vversion_name=8.2.95; video_omgid=d91995430fa12ed8; LCZCturn=798; lv_play_index=39; o_minduid=9ViQems9p2CBCM5AfqLWT4aEa-btvy40; LPSJturn=643; LVINturn=328; LPHLSturn=389; LZTturn=218; ufc=r24_7_1642333009_1642255508; LPPBturn=919; LPDFturn=470',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36'
}
response = requests.post(url=url, json=data, headers=headers)
html_data = response.json()['vinfo']
print(html_data)
m3u8_url = re.findall('url":"(.*?)",', html_data)[3]
m3u8_data = requests.get(url=m3u8_url).text
m3u8_data = re.sub('#E.*', '', m3u8_data).split()
for ts in tqdm(m3u8_data):
ts_1 = 'https://apd-327e87624fa9c6fc7e4593b5030502b1.v.smtcdns.com/vipts.tc.qq.com/AaFUPCn0gS17yiKCHnFtZa7vI5SOO0s7QXr0_3AkkLrQ/uwMROfz2r55goaQXGdGnC2de645-3UDsSmF-Av4cmvPV0YOx/svp_50112/vaemO__lrQCQrrgtQzL5v1kmLVKQZEaG2UBQO4eMRu4BAw6vBUoD1HAf7yUD8BtrL3NLr7bf9yrfSaqK5ufP8vmfEejwt0tuD8aNhyny1M-GJ8T1L1qi0R47t-v8KxV0ha-jJhALtc2N3tgRaTSfRwXwJ_vQObnhIdbyaVlJ2DzvMKoIlKYb_g/'
ts_url = ts_1 + ts
ts_content = requests.get(url=ts_url).content
with open('斗破12.mp4', mode='ab') as f:
f.write(ts_content)
print('斗破下载完成')
猫f1.txt阿曼维沙尔阿杰贾伊维杰拉胡尔曼尼什肖比特批评塔夫林现在输出应该符合上面给定的条件 最佳答案 您可以在文件读取循环中设置一个计数器并打印它, 计数=0 读取行时做 让我们数一数++ if
我正在尝试查找文件 1 和文件 2 中的共同行。如果公共(public)行存在,我想写入文件 2 中的行,否则打印文件 1 中的非公共(public)行。fin1 和 fin2 是这里的文件句柄。它读
我有这个 SQL 脚本: CREATE TABLE `table_1` ( `IDTable_1` int(11) NOT NULL, PRIMARY KEY (`IDTable_1`) );
我有 512 行要插入到数据库中。我想知道提交多个插入内容是否比提交一个大插入内容有任何优势。例如 1x 512 行插入 -- INSERT INTO mydb.mytable (id, phonen
如何从用户中选择user_id,SUB(row, row - 1),其中user_id=@userid我的表用户,id 为 1、3、4、10、11、23...(不是++) --id---------u
我曾尝试四处寻找解决此问题的最佳方法,但我找不到此类问题的任何先前示例。 我正在构建一个基于超本地化的互联网购物中心,该区域分为大约 3000 个区域。每个区域包含大约 300 个项目。它们是相似的项
preg_match('|phpVersion = (.*)\n|',$wampConfFileContents,$result); $phpVersion = str_replace('"','',
我正在尝试创建一个正则表达式,使用“搜索并替换全部”删除 200 个 txt 文件的第一行和最后 10 行 我尝试 (\s*^(\h*\S.*)){10} 删除包含的前 10 行空白,但效果不佳。 最
下面的代码从数据库中获取我需要的信息,但没有打印出所有信息。首先,我知道它从表中获取了所有正确的信息,因为我已经在 sql Developer 中尝试过查询。 public static void m
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我试图在两个表中插入记录,但出现异常。您能帮我解决这个问题吗? 首先我尝试了下面的代码。 await _testRepository.InsertAsync(test); await _xyzRepo
这个基本的 bootstrap CSS 显示 1 行 4 列: Text Text Text
如果我想从表中检索前 10 行,我将使用以下代码: SELECT * FROM Persons LIMIT 10 我想知道的是如何检索前 10 个结果之后的 10 个结果。 如果我在下面执行这段代码,
今天我开始使用 JexcelApi 并遇到了这个:当您尝试从特定位置获取元素时,不是像您通常期望的那样使用sheet.getCell(row,col),而是使用sheet.getCell(col,ro
我正在尝试在我的网站上开发一个用户个人资料系统,其中包含用户之前发布的 3 个帖子。我可以让它选择前 3 条记录,但它只会显示其中一条。我是不是因为凌晨 2 点就想编码而变得愚蠢? query($q)
我在互联网上寻找答案,但找不到任何答案。 (我可能问错了?)我有一个看起来像这样的表: 我一直在使用查询: SELECT title, date, SUM(money) FROM payments W
我有以下查询,我想从数据库中获取 100 个项目,但 host_id 多次出现在 urls 表中,我想每个 host_id 从该表中最多获取 10 个唯一行。 select * from urls j
我的数据库表中有超过 500 行具有特定日期。 查询特定日期的行。 select * from msgtable where cdate='18/07/2012' 这将返回 500 行。 如何逐行查询
我想使用 sed 从某一行开始打印 n 行、跳过 n 行、打印 n 行等,直到文本文件结束。例如在第 4 行声明,打印 5-9,跳过 10-14,打印 15-19 等 来自文件 1 2 3 4 5 6
我目前正在执行验证过程来检查用户的旧密码,但问题是我无法理解为什么我的查询返回零行,而预期它有 1 行。另一件事是,即使我不将密码文本转换为 md5,哈希密码仍然得到正确的答案,但我不知道为什么会发生
我是一名优秀的程序员,十分优秀!