- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
今天来和大家说一说怎么从DataFrame
数据集中筛选符合指定条件的数据,希望会对读者朋友有所帮助。
我们先导入pandas
模块,并且读取数据,代码如下
import pandas as pd
df = pd.read_csv("netflix_titles.csv")
df.head()
首先我们可以根据文本内容直接来筛选,返回的是True
如果文本内容是相匹配的,False
如果文本内容是不匹配的,代码如下
mask = df['type'].isin(['TV Show'])
mask.head()
output
0 False
1 True
2 True
3 True
4 True
Name: type, dtype: bool
然后我们将这个mask
作用到整个数据集当中,返回的则是满足与True
条件的数据
df[mask].head()
output
当然我们也可以和.loc
方法来相结合,只挑选少数的几个指定的列名,代码如下
df.loc[mask, ['title','country','duration']].head()
output
title country duration
1 Blood & Water South Africa 2 Seasons
2 Ganglands NaN 1 Season
3 Jailbirds New Orleans NaN 1 Season
4 Kota Factory India 2 Seasons
5 Midnight Mass NaN 1 Season
当然要是我们所要筛选的文本内容并不仅仅只有1个,就可以这么来操作,代码如下
mask = df['type'].isin(['Movie','TV Show'])
结果返回的是True
,要是文本内容全部都匹配,要是出现一个不匹配的现象则返回的是False
我们可以根据某个关键字来筛选数据,数据集当中的listed-in
包含的是每部电影的种类,当然很多电影并不只有一个种类,而是同时涉及到很多个种类,例如某一部电影既有“科幻”元素,也有“爱情”元素同时还包含了部分“动作片”的元素。
我们按照某个关键字来筛选,例如筛选出包含了“horror”这个关键字的影片,代码如下
mask = df['listed_in'].str.contains('horror', case=False, na=False)
其中的case=False
表明的是忽略字母的大小写问题,na=False
表明的是对于缺失值返回的是False
,
df[mask].head()
output
而要是文本数据当中包含了一些特殊符号,例如+
、^
以及=
等符号时,我们可以将regex
参数设置成False
(默认的是True
),这样就不会被当做是正则表达式的符号,代码如下
df['a'].str.contains('^', regex=False)
#或者是
df['a'].str.contains('\^')
当关键字不仅仅只有一个的时候,就可以这么来操作
pattern = 'horror|stand-up'
mask = df['listed_in'].str.contains(pattern, case=False, na=False)
df[mask].sample(5)
output
我们用了|
来表示“或”的意思,将电影类别包含“horror”或者是“stand-up”这两类的电影筛选出来
除此之外,我们还可以这么来做
mask1 = df['listed_in'].str.contains("horror", case=False)
mask2 = df['listed_in'].str.contains("stand-up", case=False)
df[mask1 | mask2].sample(5)
出来的结果和上述一样,只不过过程可能稍加繁琐,除了|
表示的是“或”之外,也有表示的是和,也就是&
标识符,意味着条件全部都需要满足即可,例如
mask1 = (df['listed_in'].str.contains('horror', case=False, na=False))
mask2 = (df['type'].isin(['TV Show']))
df[mask1 & mask2].head(3)
output
我们可以添加多个条件在其中,多个条件同时满足,例如
mask1 = df['rating'].str.contains('tv', case=False, na=False)
mask2 = df['listed_in'].str.contains('tv', case=False, na=False)
mask3 = df['type'].str.contains('tv', case=False, na=False)
df[mask1 & mask2 & mask3].head()
output
pandas
筛选数据中的应用我们同时也可以将正则表达式应用在如下的数据筛选当中,例如str.contains('str1.*str2')
代表的是文本数据是否以上面的顺序呈现,
pattern = 'states.*mexico'
mask = data['country'].str.contains(pattern, case=False, na=False)
data[mask].head()
output
其中.*
在正则表达式当中表示匹配除换行符之外的所有字符,我们需要筛选出来包含states
以及mexico
结尾的文本数据,我们再来看下面的例子
pattern = 'states.*mexico|mexico.*states'
mask = data['country'].str.contains(pattern, case=False, na=False)
data[mask].head()
output
我们筛选出来的文本数据满足两个条件当中的一个即可
lambda
方法来筛选文本数据中的应用有一些筛选数据的方式可能稍显复杂,因此需要lambda
方法的介入,例如
cols_to_check = ['rating','listed_in','type']
pattern = 'tv'
mask = data[cols_to_check].apply(
lambda col:col.str.contains(
pattern, na=False, case=False)).all(axis=1)
我们需要在rating
、listed_in
以及type
这三列当中筛选出包含tv
的数据,我们来看一下结果如何
df[mask].head()
output
我们再来看下面的这个例子,
mask = df.apply(
lambda x: str(x['director']) in str(x['cast']),
axis=1)
上面的例子当中是来查看director
这一列是否被包含在了cast
这一列当中,结果如下
df[mask].head()
output
filter
方法我们还可以通过filter
方法来筛选文本的数据,例如筛选出列名包含in
的数据,代码如下
df.filter(like='in', axis=1).head(5)
output
当然我们也可以用.loc
方法来实现,代码如下
df.loc[:, df.columns.str.contains('in')]
出来的结果和上述的一样
要是我们将axis
改成0
,就意味着是针对行方向的,例如筛选出行索引中包含Love
的影片,代码如下
df_1 = df.set_index('title')
df_1.filter(like='Love', axis=0).head(5)
output
当然我们也可以通过.loc
方法来实现,代码如下
df_1.loc[df_1.index.str.contains('Love'), :].head()
我们可以使用query
方法,例如我们筛选出国家是韩国的影片
df.query('country == "South Korea"').head(5)
output
例如筛选出影片的添加时间是11月的,代码如下
mask = df["date_added"].str.startswith("Nov")
df[mask].head()
output
那既然用到了startswith
方法,那么就会有endswith
方法,例如
df['col_name'].str.endswith('2019')
除此之外还有这些方法可以用来筛选文本数据
df['col_name'].str.len()>10
df['col_name'].str.isnumeric()
df[col_name].str.isupper()
df[col_name].str.islower()
- END -
本文为转载分享&推荐阅读,若侵权请联系后台删除
对比Excel系列图书累积销量达15w册,让你轻松掌握数据分析技能,可以在全网搜索书名进行了解:
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!