- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
如果有一个关键码的集合K = { k0,k1 ,k2…,kn-1 },把它的所有元素按完全二叉树的顺序存储方式存储
在一个一维数组中,并满足:Ki<= K2i+1且 Ki<=K2i+2 ( Ki>=
K2i+1且Ki<=K2i+2) i = 0,1,
2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
简单描述:
大堆(大根堆):树中父亲都大于(等于)孩子。
小堆(小根堆):树中父亲都小于(等于)孩子。
堆的性质:
应用场景:堆排序、topk。
typedef int HPDataType;//堆中存放的数据,假设是整型
typedef struct Heap
{
HPDataType* a;//指针指向堆中存储的数据
size_t size;//堆中当前元素的数目
size_t capacity;//堆中所能存储数据的容量
}HP;
void HeapInit(HP* php)
{
assert(php);
php->capacity = php->size = 0;
php->a = NULL;
}
void HeapDestory(HP* php)
{
assert(php);
free(php->a);
php->a = NULL;
}
思路:
时间复杂度:log(N)
void Swap(HPDataType* pa, HPDataType* pb)//交换函数:交换数组中的两个元素
{
HPDataType tmp = *pa;
*pa = *pb;
*pb = tmp;
}
void AdjustUp(HPDataType* a, size_t child )//堆的向上调整
{
size_t parant = (child - 1) / 2;
while (child > 0)
{
if (a[child] < a[parant])//此处如果是<就是小堆,如果是>就是大堆
{
Swap(&a[child], &a[parant]);
child = parant;
parant = (child - 1) / 2;
}
else
{
break;
}
}
}
void HeapPush(HP* php, HPDataType x)
{
assert(php);
//判断是否需要扩充并进行扩充
if (php->size == php->capacity)
{
size_t newCapacity = php->capacity == 0 ? 2 : 2 * php->capacity;
HPDataType*tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType)*newCapacity);
if (tmp == NULL)
{
printf("realloc failed\n");
exit(-1);
}
php->a = tmp;
php->capacity = newCapacity;
}
php->a[php->size] = x;
php->size++;
//向上调整,控制保持是堆
AdjustUp(php->a, php->size - 1);
}
思路:
下面是向下调整的图示:
时间复杂度:O(log2N)
void Swap(HPDataType* pa, HPDataType* pb)//交换函数:交换数组中的两个元素
{
HPDataType tmp = *pa;
*pa = *pb;
*pb = tmp;
}
void AdjustDown(HPDataType* a, size_t size,size_t root)
{
size_t parant = root;
size_t child = 2*parant+1;
while (child<size)
{
if (child+1<size &&a[child + 1] < a[child])//此时后面的这个如果是<就是小堆,如果是>就是大堆
++child;
if (a[child] < a[parant])//如果是<就是小堆,如果是>就是大堆
{
Swap(&a[child], &a[parant]);
parant = child;
child = 2 * parant + 1;
}
else
{
break;
}
}
}
void HeapPop(HP* php)
{
assert(php);
Swap(&php->a[0], &php->a[php->size - 1]);
php->size--;
AdjustDown(php->a, php->size, 0);
}
问:堆的删除为什么不直接从后向前进行覆盖,把第一个元素覆盖掉?
答:首先时间复杂度是O(N),其次堆原来的结构可能会被打乱,同时也可能丧失堆原来的性质变得不再是堆,除非堆原来的数组元素是从小到大或者从大到小是有序的情况下才一定能够保持堆的性质,但即使这种情况下堆的结构仍然会被打乱,即它们的父子关系被破坏掉。
bool HeapEmpty(HP* php)
{
assert(php);
return php->size == 0;
}
size_t HeapSize(HP* php)
{
assert(php);
return php->size;
}
HPDataType HeapTop(HP* php)
{
assert(php);
assert(php->size > 0);
return php->a[0];
}
void HeapPrint(HP* php)
{
assert(php);
for (size_t i = 0; i < php->size; i++)
{
printf("%d ", php->a[i]);
}
printf("\n");
}
我想在我的 Tree 类中创建一个函数来遍历 n-ary Tree[T] 以取回具有 (level, T) 的元组,以便该 Tree 的用户可以执行类似 tree.traverse.foreach{
给定一个层次格式的数组,它们的直接子级存储在一个连续的数组中,返回一个 n 叉树 给定输入格式: [{'name':'a', 'level': -1}, {'name':'b', 'level
我要求教授给我一份另一个学期的旧作业。它是关于构建一个家谱,然后找到给定的两个节点之间的亲属关系。家谱是关于那美克星人(龙珠z)的,所以每个那美克星人都有一个父亲。 问题是输入是这样的: First
我正在尝试创建一个包含子 vector 的 n 叉树。 这就是我到目前为止所得到的。 在 node.h 文件中我有这个: #include #include using namespa
我正在尝试了解 n 叉树的预序遍历。我一直在阅读,我发现的所有示例都使用左子树和右子树,但是在 n 叉树中,什么是左子树,什么是右子树?有人可以给出一个很好的解释或伪代码吗? 最佳答案 而不是考虑 l
我应该反序列化一个 n 叉树。 这段代码创建了我的树: foodtree.addChildren("Food", { "Plant", "Animal" } ); foodtree.a
我正在尝试创建叉 TreeMap ,但仍然没有成功。这是我的代码: #include #include #include void procStatus(int level) { prin
我有一个二叉树,代表一个解析后的逻辑公式。例如,f = a & b & -c | d 由前缀表示法的列表列表表示,其中第一个元素是运算符(一元或二元),接下来的元素是它们的参数: f = [ |, [
我正在尝试根据给定的输入创建一棵树。那里将有一个根,包括子节点和子子节点。我可以实现树,在其中我可以将子节点添加到特定的主节点(我已经知道根)。但是,我试图弄清楚实现树的推荐方法是什么,我们必须首先从
我在 n 个节点上有一个完整的 19 元树。我标记所有具有以下属性的节点,即它们的所有非根祖先都是最年长或最小的 child (包括根)。我必须为标记节点的数量给出一个渐近界限。 我注意到 第一层有一
如何在不使用递归的情况下遍历 n 叉树? 递归方式: traverse(Node node) { if(node == null) return; for(Node c
我的树/节点类: import java.util.ArrayList; import java.util.List; public class Node { private T data;
关闭。这个问题需要更多focused .它目前不接受答案。 想改善这个问题吗?更新问题,使其仅关注一个问题 editing this post . 4年前关闭。 Improve this questi
我在我的 Java 应用程序中有一个非 UI 使用的所谓的“k-ary”树,我想知道 javax.swing.tree 包是否是完成这项工作的正确工具,即使它与 Swing 打包在一起. 我有一类 W
我正在用 Java 实现 N 叉树;每个节点可以有尽可能多的节点。当我尝试 build 一棵树时,问题就来了。我有一个函数可以递归地创建一个特定高度的树,并根据节点列表分配子节点。当我调用该函数时,根
嗨,我有这段代码来搜索 n 叉树,但它不能正常工作,我不知道这有什么问题当搜索 n4 和 n5 时,它返回 n3怎么了? public FamilyNode findNodeByName(Family
哪个是 C 语言中 N 叉树的简洁实现? 特别是,我想实现一个 n 元树,而不是自平衡的,每个节点中的子节点数量不受限制,其中每个节点都包含一个已经定义的结构,例如: struct task {
#include #include #include typedef struct _Tree { struct _Tree *child; struct _Tree *
我正在编写文件系统层次结构的 N 叉树表示形式,其中每个节点都包含有关它所表示的文件/文件夹的一些信息。 public class TreeNode { private FileSystemE
如何在 R 中为给定数量的分支和深度构建 N 叉树,例如深度为 3 的二叉树? 编辑:将源问题与问答分开。 最佳答案 我想提出解决方案,我用它来构建树数据结构 叶安姆 分支因子。要将数据存储在树中,字
我是一名优秀的程序员,十分优秀!