- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
参考:
为什么SAM可以实现更好的泛化?如何在Pytorch中实现SAM?-电子发烧友网
导读 使用SAM(锐度感知最小化),优化到损失的最平坦的最小值的地方,增强泛化能力。
动机来自先前的工作,在此基础上,我们提出了一种新的、有效的方法来同时减小损失值和损失的锐度。具体来说,在我们的处理过程中,进行锐度感知最小化(SAM),在领域内寻找具有均匀的低损失值的参数。这个公式产生了一个最小-最大优化问题,在这个问题上梯度下降可以有效地执行。我们提出的实证结果表明,SAM在各种基准数据集上都改善了的模型泛化。
在深度学习中,我们使用SGD/Adam等优化算法在我们的模型中实现收敛,从而找到全局最小值,即训练数据集中损失较低的点。但等几种研究表明,许多网络可以很容易地记住训练数据并有能力随时overfit,为了防止这个问题,增强泛化能力,谷歌研究人员发表了一篇新论文叫做Sharpness Awareness Minimization,在CIFAR10上以及其他的数据集上达到了最先进的结果。
在本文中,我们将看看为什么SAM可以实现更好的泛化,以及我们如何在Pytorch中实现SAM。
SAM的原理是什么?
在梯度下降或任何其他优化算法中,我们的目标是找到一个具有低损失值的参数。但是,与其他常规的优化方法相比,SAM实现了更好的泛化,它将重点放在领域内寻找具有均匀的低损失值的参数(而不是只有参数本身具有低损失值)上。
由于计算邻域参数而不是计算单个参数,损失超平面比其他优化方法更平坦,这反过来增强了模型的泛化。
(左))用SGD训练的ResNet收敛到的一个尖锐的最小值。(右)用SAM训练的相同的ResNet收敛到的一个平坦的最小值。
注意:SAM不是一个新的优化器,它与其他常见的优化器一起使用,比如SGD/Adam。
在Pytorch中实现SAM
在Pytorch中实现SAM非常简单和直接
import torch
class SAM(torch.optim.Optimizer):
def init(self, params, base_optimizer, rho=0.05, **kwargs):
assert rho 》= 0.0, f“Invalid rho, should be non-negative: {rho}”
defaults = dict(rho=rho, **kwargs)
super(SAM, self).init(params, defaults)
self.base_optimizer = base_optimizer(self.param_groups, **kwargs)
self.param_groups = self.base_optimizer.param_groups
@torch.no_grad()
def first_step(self, zero_grad=False):
grad_norm = self._grad_norm()
for group in self.param_groups:
scale = group[“rho”] / (grad_norm + 1e-12)
for p in group[“params”]:
if p.grad is None: continue
e_w = p.grad * scale.to(p)
p.add_(e_w) # climb to the local maximum “w + e(w)”
self.state[p][“e_w”] = e_w
if zero_grad: self.zero_grad()
@torch.no_grad()
def second_step(self, zero_grad=False):
for group in self.param_groups:
for p in group[“params”]:
if p.grad is None: continue
p.sub_(self.state[p][“e_w”]) # get back to “w” from “w + e(w)”
self.base_optimizer.step() # do the actual “sharpness-aware” update
if zero_grad: self.zero_grad()
def _grad_norm(self):
shared_device = self.param_groups[0][“params”][0].device # put everything on the same device, in case of model parallelism
norm = torch.norm(
torch.stack([
p.grad.norm(p=2).to(shared_device)
for group in self.param_groups for p in group[“params”]
if p.grad is not None
]),
p=2
)
return norm
代码取自非官方的Pytorch实现。
代码解释:
首先,我们从Pytorch继承优化器类来创建一个优化器,尽管SAM不是一个新的优化器,而是在需要继承该类的每一步更新梯度(在基础优化器的帮助下)。
该类接受模型参数、基本优化器和rho, rho是计算最大损失的邻域大小。
在进行下一步之前,让我们先看看文中提到的伪代码,它将帮助我们在没有数学的情况下理解上述代码。
正如我们在计算第一次反向传递后的伪代码中看到的,我们计算epsilon并将其添加到参数中,这些步骤是在上述python代码的方法first_step中实现的。
现在在计算了第一步之后,我们必须回到之前的权重来计算基础优化器的实际步骤,这些步骤在函数second_step中实现。
函数_grad_norm用于返回矩阵向量的norm,即伪代码的第10行
在构建这个类后,你可以简单地使用它为你的深度学习项目通过以下的训练函数片段。
from sam import SAM
。。.
model = YourModel()
base_optimizer = torch.optim.SGD # define an optimizer for the “sharpness-aware” update
optimizer = SAM(model.parameters(), base_optimizer, lr=0.1, momentum=0.9)
。。.
for input, output in data:
loss = loss_function(output, model(input)) # use this loss for any training statistics
loss.backward()
optimizer.first_step(zero_grad=True)
loss_function(output, model(input)).backward() # make sure to do a full forward pass
optimizer.second_step(zero_grad=True)
。。.
总结
虽然SAM的泛化效果较好,但是这种方法的主要缺点是,由于前后两次计算锐度感知梯度,需要花费两倍的训练时间。除此之外,SAM还在最近发布的NFNETS上证明了它的效果,这是ImageNet目前的最高水平,在未来,我们可以期待越来越多的论文利用这一技术来实现更好的泛化。
英文原文:https://pub.towardsai.net/we-dont-need-to-worry-about-overfitting-anymore-9fb31a154c81
我之前让 dll 注入(inject)器变得简单,但我有 Windows 7,我用 C# 和 C++ 做了它,它工作得很好!但是现在当我在 Windows 8 中尝试相同的代码时,它似乎没有以正确的方
我正在尝试制作一个名为 core-splitter 的元素,该元素在 1.0 中已弃用,因为它在我们的项目中起着关键作用。 如果您不知道 core-splitter 的作用,我可以提供一个简短的描述。
我有几个不同的蜘蛛,想一次运行所有它们。基于 this和 this ,我可以在同一个进程中运行多个蜘蛛。但是,我不知道如何设计一个信号系统来在所有蜘蛛都完成后停止 react 器。 我试过了: cra
有没有办法在达到特定条件时停止扭曲 react 器。例如,如果一个变量被设置为某个值,那么 react 器应该停止吗? 最佳答案 理想情况下,您不会将变量设置为一个值并停止 react 器,而是调用
https://code.angularjs.org/1.0.0rc9/angular-1.0.0rc9.js 上面的链接定义了外部js文件,我不知道Angular-1.0.0rc9.js的注入(in
我正在尝试运行一个函数并将服务注入(inject)其中。我认为这可以使用 $injector 轻松完成.所以我尝试了以下(简化示例): angular.injector().invoke( [ "$q
在 google Guice 中,我可以使用函数 createInjector 创建基于多个模块的注入(inject)器。 因为我使用 GWT.create 在 GoogleGin 中实例化注入(in
我在 ASP.NET Core 1.1 解决方案中使用配置绑定(bind)。基本上,我在“ConfigureServices Startup”部分中有一些用于绑定(bind)的简单代码,如下所示: s
我在 Spring MVC 中设置 initBinder 时遇到一些问题。我有一个 ModelAttribute,它有一个有时会显示的字段。 public class Model { privat
我正在尝试通过jquery post发布knockoutjs View 模型 var $form = $('#barcodeTemplate form'); var data = ko.toJS(vm
如何为包含多态对象集合的复杂模型编写自定义模型绑定(bind)程序? 我有下一个模型结构: public class CustomAttributeValueViewModel { publi
您好,我正在尝试实现我在 this article 中找到的扩展方法对于简单的注入(inject)器,因为它不支持开箱即用的特定构造函数的注册。 根据这篇文章,我需要用一个假的委托(delegate)
你好,我想自动注册我的依赖项。 我现在拥有的是: public interface IRepository where T : class public interface IFolderReposi
我正在使用 Jasmine 测试一些 Angular.js 代码。为此,我需要一个 Angular 注入(inject)器: var injector = angular.injector(['ng'
我正在使用 Matlab 代码生成器。不可能包含代码风格指南。这就是为什么我正在寻找一个工具来“ reshape ”、重命名和重新格式化生成的代码,根据我的: 功能横幅约定 文件横幅约定 命名约定 等
这个问题在这里已经有了答案: Where and why do I have to put the "template" and "typename" keywords? (8 个答案) 关闭 8
我开发了一种工具,可以更改某些程序的外观。为此,我需要在某些进程中注入(inject)一个 dll。 现在我基本上使用这个 approach .问题通常是人们无法注入(inject) dll,因为他们
我想使用 swing、spring 和 hibernate 编写一个 java 应用程序。 我想使用数据绑定(bind)器用 bean 的值填充 gui,并且我还希望它反射(reflect) gui
我有这段代码,当两个蜘蛛完成后,程序仍在运行。 #!C:\Python27\python.exe from twisted.internet import reactor from scrapy.cr
要点是 Spring Batch (v2) 测试框架具有带有 @Autowired 注释的 JobLauncherTestUtils.setJob。我们的测试套件有多个 Job 类提供者。因为这个类不
我是一名优秀的程序员,十分优秀!