- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
之前在https://blog.csdn.net/fengbingchun/article/details/125018001 介绍过深度学习优化算法Adam,这里介绍下深度学习的另一种优化算法Nadam。
**Nadam:Nesterov-accelerated Adaptive Moment Estimation,梯度下降优化算法的扩展,是Adam(Adaptive Moment Estimation)****和NAG(Nesterov Accelerated Gradient)**两种算法的结合,可以提高优化算法的性能。如下图所示,截图来自:https://arxiv.org/pdf/1609.04747.pdf
Nadam是Adam的扩展,添加了NAG,是一种改进的动量类型。
Note:公式26对应于带动量的SGD中的公式4;公式27等价于公式26;公式28对应于NAG中的公式5;公式30对应于Adam中的公式19、20、21;公式31等价于公式30
以下是与Nadam不同的代码片段:
1. 在原有枚举类Optimization的基础上新增Nadam:
enum class Optimization {
BGD, // Batch Gradient Descent
SGD, // Stochastic Gradient Descent
MBGD, // Mini-batch Gradient Descent
SGD_Momentum, // SGD with Momentum
AdaGrad, // Adaptive Gradient
RMSProp, // Root Mean Square Propagation
Adadelta, // an adaptive learning rate method
Adam, // Adaptive Moment Estimation
AdaMax, // a variant of Adam based on the infinity norm
NAG, // Nesterov Accelerated Gradient
Nadam // Nesterov-accelerated Adaptive Moment Estimation
};
2. calculate_gradient_descent函数:
void LogisticRegression2::calculate_gradient_descent(int start, int end)
{
switch (optim_) {
case Optimization::Nadam: {
int len = end - start;
std::vector<float> m(feature_length_, 0.), v(feature_length_, 0.), mhat(feature_length_, 0.), vhat(feature_length_, 0.);
std::vector<float> z(len, 0.), dz(len, 0.);
float beta1t = 1., beta2t = 1.;
for (int i = start, x = 0; i < end; ++i, ++x) {
z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);
beta1t *= beta1_;
beta2t *= beta2_;
for (int j = 0; j < feature_length_; ++j) {
float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
m[j] = beta1_ * m[j] + (1. - beta1_) * dw; // formula 19
v[j] = beta2_ * v[j] + (1. - beta2_) * (dw * dw); // formula 19
mhat[j] = m[j] / (1. - beta1t); // formula 20
vhat[j] = v[j] / (1. - beta2t); // formula 20
w_[j] = w_[j] - alpha_ * (beta1_ * mhat[j] + (1. - beta1_) * dw / (1. - beta1t)) / (std::sqrt(vhat[j]) + eps_); // formula 33
}
b_ -= (alpha_ * dz[x]);
}
}
break;
case Optimization::NAG: {
int len = end - start;
std::vector<float> v(feature_length_, 0.);
std::vector<float> z(len, 0), dz(len, 0);
for (int i = start, x = 0; i < end; ++i, ++x) {
z[x] = calculate_z2(data_->samples[random_shuffle_[i]], v);
dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);
for (int j = 0; j < feature_length_; ++j) {
float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
v[j] = mu_ * v[j] + alpha_ * dw; // formula 5
w_[j] = w_[j] - v[j];
}
b_ -= (alpha_ * dz[x]);
}
}
break;
case Optimization::AdaMax: {
int len = end - start;
std::vector<float> m(feature_length_, 0.), u(feature_length_, 1e-8), mhat(feature_length_, 0.);
std::vector<float> z(len, 0.), dz(len, 0.);
float beta1t = 1.;
for (int i = start, x = 0; i < end; ++i, ++x) {
z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);
beta1t *= beta1_;
for (int j = 0; j < feature_length_; ++j) {
float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
m[j] = beta1_ * m[j] + (1. - beta1_) * dw; // formula 19
u[j] = std::max(beta2_ * u[j], std::fabs(dw)); // formula 24
mhat[j] = m[j] / (1. - beta1t); // formula 20
// Note: need to ensure than u[j] cannot be 0.
// (1). u[j] is initialized to 1e-8, or
// (2). if u[j] is initialized to 0., then u[j] adjusts to (u[j] + 1e-8)
w_[j] = w_[j] - alpha_ * mhat[j] / u[j]; // formula 25
}
b_ -= (alpha_ * dz[x]);
}
}
break;
case Optimization::Adam: {
int len = end - start;
std::vector<float> m(feature_length_, 0.), v(feature_length_, 0.), mhat(feature_length_, 0.), vhat(feature_length_, 0.);
std::vector<float> z(len, 0.), dz(len, 0.);
float beta1t = 1., beta2t = 1.;
for (int i = start, x = 0; i < end; ++i, ++x) {
z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);
beta1t *= beta1_;
beta2t *= beta2_;
for (int j = 0; j < feature_length_; ++j) {
float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
m[j] = beta1_ * m[j] + (1. - beta1_) * dw; // formula 19
v[j] = beta2_ * v[j] + (1. - beta2_) * (dw * dw); // formula 19
mhat[j] = m[j] / (1. - beta1t); // formula 20
vhat[j] = v[j] / (1. - beta2t); // formula 20
w_[j] = w_[j] - alpha_ * mhat[j] / (std::sqrt(vhat[j]) + eps_); // formula 21
}
b_ -= (alpha_ * dz[x]);
}
}
break;
case Optimization::Adadelta: {
int len = end - start;
std::vector<float> g(feature_length_, 0.), p(feature_length_, 0.);
std::vector<float> z(len, 0.), dz(len, 0.);
for (int i = start, x = 0; i < end; ++i, ++x) {
z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);
for (int j = 0; j < feature_length_; ++j) {
float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
g[j] = mu_ * g[j] + (1. - mu_) * (dw * dw); // formula 10
//float alpha = std::sqrt(p[j] + eps_) / std::sqrt(g[j] + eps_);
float change = -std::sqrt(p[j] + eps_) / std::sqrt(g[j] + eps_) * dw; // formula 17
w_[j] = w_[j] + change;
p[j] = mu_ * p[j] + (1. - mu_) * (change * change); // formula 15
}
b_ -= (eps_ * dz[x]);
}
}
break;
case Optimization::RMSProp: {
int len = end - start;
std::vector<float> g(feature_length_, 0.);
std::vector<float> z(len, 0), dz(len, 0);
for (int i = start, x = 0; i < end; ++i, ++x) {
z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);
for (int j = 0; j < feature_length_; ++j) {
float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
g[j] = mu_ * g[j] + (1. - mu_) * (dw * dw); // formula 18
w_[j] = w_[j] - alpha_ * dw / std::sqrt(g[j] + eps_);
}
b_ -= (alpha_ * dz[x]);
}
}
break;
case Optimization::AdaGrad: {
int len = end - start;
std::vector<float> g(feature_length_, 0.);
std::vector<float> z(len, 0), dz(len, 0);
for (int i = start, x = 0; i < end; ++i, ++x) {
z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);
for (int j = 0; j < feature_length_; ++j) {
float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
g[j] += dw * dw;
w_[j] = w_[j] - alpha_ * dw / std::sqrt(g[j] + eps_); // formula 8
}
b_ -= (alpha_ * dz[x]);
}
}
break;
case Optimization::SGD_Momentum: {
int len = end - start;
std::vector<float> v(feature_length_, 0.);
std::vector<float> z(len, 0), dz(len, 0);
for (int i = start, x = 0; i < end; ++i, ++x) {
z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);
for (int j = 0; j < feature_length_; ++j) {
float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
v[j] = mu_ * v[j] + alpha_ * dw; // formula 4
w_[j] = w_[j] - v[j];
}
b_ -= (alpha_ * dz[x]);
}
}
break;
case Optimization::SGD:
case Optimization::MBGD: {
int len = end - start;
std::vector<float> z(len, 0), dz(len, 0);
for (int i = start, x = 0; i < end; ++i, ++x) {
z[x] = calculate_z(data_->samples[random_shuffle_[i]]);
dz[x] = calculate_loss_function_derivative(calculate_activation_function(z[x]), data_->labels[random_shuffle_[i]]);
for (int j = 0; j < feature_length_; ++j) {
float dw = data_->samples[random_shuffle_[i]][j] * dz[x];
w_[j] = w_[j] - alpha_ * dw;
}
b_ -= (alpha_ * dz[x]);
}
}
break;
case Optimization::BGD:
default: // BGD
std::vector<float> z(m_, 0), dz(m_, 0);
float db = 0.;
std::vector<float> dw(feature_length_, 0.);
for (int i = 0; i < m_; ++i) {
z[i] = calculate_z(data_->samples[i]);
o_[i] = calculate_activation_function(z[i]);
dz[i] = calculate_loss_function_derivative(o_[i], data_->labels[i]);
for (int j = 0; j < feature_length_; ++j) {
dw[j] += data_->samples[i][j] * dz[i]; // dw(i)+=x(i)(j)*dz(i)
}
db += dz[i]; // db+=dz(i)
}
for (int j = 0; j < feature_length_; ++j) {
dw[j] /= m_;
w_[j] -= alpha_ * dw[j];
}
b_ -= alpha_*(db/m_);
}
}
执行结果如下图所示:测试函数为test_logistic_regression2_gradient_descent,多次执行每种配置,最终结果都相同。图像集使用MNIST,其中训练图像总共10000张,0和1各5000张,均来自于训练集;预测图像总共1800张,0和1各900张,均来自于测试集。Nadam和Adam配置参数相同的情况下,即学习率为0.001,beta1为0.8,beta2为0.8888,eps为1e-8,Adam耗时29秒,Nadam耗时25秒,它们的识别率均为100%
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!