- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
Go(又称 Golang)是 Google 的 Robert Griesemer,Rob Pike 及 Ken Thompson 开发的一种静态类型、编译型语言。Go 语言语法与 C语言相近,但功能上有:内存安全,GC(垃圾回收),结构形态及 CSP-style 并发计算。
数组是一个由固定长度的特定类型元素组成的序列,一个数组可以由零个或多个元素组成。
因为数组的长度是固定的,所以在Go语言中很少直接使用数组。
Go语言数组的声明:
var 数组变量名 [元素数量]Type
例子:
//默认数组中的值是类型的默认值
var arr [3]int
从数组中取值:
fmt.Println(arr[0])
fmt.Println(arr[1])
fmt.Println(arr[2])
for index,value := range arr{
fmt.Printf("索引:%d,值:%d \n",index,value)
}
给数组赋值:
1、初始化的时候赋值
var arr [3]int = [3]int{1,2,3}
//如果第三个不赋值,就是默认值0
var arr [3]int = [3]int{1,2}
//可以使用简短声明
arr := [3]int{1,2,3}
//如果不写数据数量,而使用...,表示数组的长度是根据初始化值的个数来计算
arr := [...]int{1,2,3}
2、通过索引下标赋值
var arr [3]int
arr[0] = 5
arr[1] = 6
arr[2] = 7
一定要注意,数组是定长的,不可更改,在编译阶段就决定了
小技巧:
如果觉的每次写 [3]int
有点麻烦,你可以为 [3]int
定义一个新的类型。
type arr3 [3]int
//这样每次用arr3 代替[3]int,注意前面学过 定义一个类型后 arr3就是一个新的类型
var arr arr3
arr[0] = 2
for index,value := range arr{
fmt.Printf("索引:%d,值:%d \n",index,value)
}
如果想要只初始化第三个值怎么写?
//2 给索引为2的赋值 ,所以结果是 0,0,3
arr := [3]int{2:3}
for index,value := range arr{
fmt.Printf("索引:%d,值:%d \n",index,value)
}
数组比较
如果两个数组类型相同(包括数组的长度,数组中元素的类型)的情况下,我们可以直接通过较运算符(==
和!=
)来判断两个数组是否
相等,只有当两个数组的所有元素都是相等的时候数组才是相等的,不能比较两个类型不同的数组,否则程序将无法完成编译。
a := [2]int{1, 2}
b := [...]int{1, 2}
c := [2]int{1, 3}
fmt.Println(a == b, a == c, b == c) // "true false false"
d := [3]int{1, 2}
fmt.Println(a == d) // 编译错误:无法比较 [2]int == [3]int
Go语言中允许使用多维数组,因为数组属于值类型,所以多维数组的所有维度都会在创建时自动初始化零值,多维数组尤其适合管理具有父子关系或者与坐标系相关联的数据。
声明多维数组的语法如下所示:
//array_name 为数组的名字,array_type 为数组的类型,size1、size2 等等为数组每一维度的长度。
var array_name [size1][size2]...[sizen] array_type
二维数组是最简单的多维数组,二维数组本质上是由多个一维数组组成的。
// 声明一个二维整型数组,两个维度的长度分别是 4 和 2
var array [4][2]int
// 使用数组字面量来声明并初始化一个二维整型数组
array = [4][2]int{{10, 11}, {20, 21}, {30, 31}, {40, 41}}
// 声明并初始化数组中索引为 1 和 3 的元素
array = [4][2]int{1: {20, 21}, 3: {40, 41}}
// 声明并初始化数组中指定的元素
array = [4][2]int{1: {0: 20}, 3: {1: 41}}
取值:
fmt.Println(array[1][0])
for index,value := range array{
fmt.Printf("索引:%d,值:%d \n",index,value)
}
赋值
// 声明一个 2×2 的二维整型数组
var array [2][2]int
// 设置每个元素的整型值
array[0][0] = 10
array[0][1] = 20
array[1][0] = 30
array[1][1] = 40
只要类型一致,就可以将多维数组互相赋值,如下所示,多维数组的类型包括每一维度的长度以及存储在元素中数据的类型:
// 声明两个二维整型数组 [2]int [2]int
var array1 [2][2]int
var array2 [2][2]int
// 为array2的每个元素赋值
array2[0][0] = 10
array2[0][1] = 20
array2[1][0] = 30
array2[1][1] = 40
// 将 array2 的值复制给 array1
array1 = array2
因为数组中每个元素都是一个值,所以可以独立复制某个维度,如下所示:
// 将 array1 的索引为 1 的维度复制到一个同类型的新数组里
var array3 [2]int = array1[1]
// 将数组中指定的整型值复制到新的整型变量里
var value int = array1[1][0]
地址
、大小
和容量
,切片一般用于快速地操作一块数据集合。从连续内存区域生成切片是常见的操作,格式如下:
slice [开始位置 : 结束位置]
语法说明如下:
代码如下:
var a = [3]int{1, 2, 3}
//a[1:2] 生成了一个新的切片
fmt.Println(a, a[1:2])
从数组或切片生成新的切片拥有如下特性:
(a[:2])
;(a[0:])
;(a[:])
;(a[0:0])
。注意:超界会报运行时错误,比如数组长度为3,则结束位置最大只能为3
切片在指针的基础上增加了大小,约束了切片对应的内存区域,切片使用中无法对切片内部的地址和大小进行手动调整,因此切片比指针更安全、强大。
示例
切片和数组密不可分,如果将数组理解为一栋办公楼,那么切片就是把不同的连续楼层出租给使用者,出租的过程需要选择开始楼层和结束楼层,这个过程就会生成切片
var highRiseBuilding [30]int
for i := 0; i < 30; i++ {
highRiseBuilding[i] = i + 1
}
// 区间
fmt.Println(highRiseBuilding[10:15])
// 中间到尾部的所有元素
fmt.Println(highRiseBuilding[20:])
// 开头到中间指定位置的所有元素
fmt.Println(highRiseBuilding[:2])
var highRiseBuilding [30]int
for i := 0; i < 30; i++ {
highRiseBuilding[i] = i + 1
}
// 区间
fmt.Println(highRiseBuilding[10:15])
// 中间到尾部的所有元素
fmt.Println(highRiseBuilding[20:])
// 开头到中间指定位置的所有元素
fmt.Println(highRiseBuilding[:2])
除了可以从原有的数组或者切片中生成切片外,也可以声明一个新的切片,每一种类型都可以拥有其切片类型,表示多个相同类型元素的连续集合。
切片类型声明格式如下:
//name 表示切片的变量名,Type 表示切片对应的元素类型。
var name []Type
// 声明字符串切片
var strList []string
// 声明整型切片
var numList []int
// 声明一个空切片
var numListEmpty = []int{}
// 输出3个切片
fmt.Println(strList, numList, numListEmpty)
// 输出3个切片大小
fmt.Println(len(strList), len(numList), len(numListEmpty))
// 切片判定空的结果
fmt.Println(strList == nil)
fmt.Println(numList == nil)
fmt.Println(numListEmpty == nil)
切片是动态结构,只能与 nil 判定相等,不能互相判定相等。声明新的切片后,可以使用 append() 函数向切片中添加元素。
var strList []string
// 追加一个元素
strList = append(strList,"码神之路")
fmt.Println(strList)
如果需要动态地创建一个切片,可以使用 make() 内建函数,格式如下:
make( []Type, size, cap )
Type
是指切片的元素类型,size
指的是为这个类型分配多少个元素,cap
为预分配的元素数量,这个值设定后不影响 size,只是能提前分配空间,降低多次分配空间造成的性能问题
。
a := make([]int, 2)
b := make([]int, 2, 10)
fmt.Println(a, b)
//容量不会影响当前的元素个数,因此 a 和 b 取 len 都是 2
//但如果我们给a 追加一个 a的长度就会变为3
fmt.Println(len(a), len(b))
使用 make() 函数生成的切片一定发生了内存分配操作,但给定开始与结束位置(包括切片复位)的切片只是将新的切片结构指向已经分配好的内存区域,设定开始与结束位置,不会发生内存分配操作。
思考题
var numbers4 = [...]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
myslice := numbers4[4:6]
//这打印出来长度为2
fmt.Printf("myslice为 %d, 其长度为: %d\n", myslice, len(myslice))
myslice = myslice[:cap(myslice)]
//为什么 myslice 的长度为2,却能访问到第四个元素
fmt.Printf("myslice的第四个元素为: %d", myslice[3])
答案:因为我们的myslice切片在截取数组的时候,数组会把6以后的容量也分给切片相当于一个cap,所以在获取的时候能获取到第四个元素
Go语言的内置函数 copy() 可以将一个数组切片复制到另一个数组切片中,如果加入的两个数组切片不一样大,就会按照其中较小的那个数组切片的元素个数进行复制。
copy() 函数的使用格式如下:
copy( destSlice, srcSlice []T) int
其中 srcSlice
为数据来源切片,destSlice
为复制的目标(也就是将 srcSlice 复制到 destSlice),目标切片必须分配过空间且足够承载复制的元素个数
,并且来源和目标的类型必须一致
,copy() 函数的返回值表示实际发生复制的元素个数。
下面的代码展示了使用 copy() 函数将一个切片复制到另一个切片的过程:
slice1 := []int{1, 2, 3, 4, 5}
slice2 := []int{5, 4, 3}
copy(slice2, slice1) // 只会复制slice1的前3个元素到slice2中
copy(slice1, slice2) // 只会复制slice2的3个元素到slice1的前3个位置
切片的引用和复制操作对切片元素的影响:
package main
import "fmt"
func main() {
// 设置元素数量为1000
const elementCount = 1000
// 预分配足够多的元素切片
srcData := make([]int, elementCount)
// 将切片赋值
for i := 0; i < elementCount; i++ {
srcData[i] = i
}
// 引用切片数据 切片不会因为等号操作进行元素的复制
refData := srcData
// 预分配足够多的元素切片
copyData := make([]int, elementCount)
// 将数据复制到新的切片空间中
copy(copyData, srcData)
// 修改原始数据的第一个元素
srcData[0] = 999
// 打印引用切片的第一个元素 引用数据的第一个元素将会发生变化
fmt.Println(refData[0])
// 打印复制切片的第一个和最后一个元素 由于数据是复制的,因此不会发生变化。
fmt.Println(copyData[0], copyData[elementCount-1])
// 复制原始数据从4到6(不包含)
copy(copyData, srcData[4:6])
for i := 0; i < 5; i++ {
fmt.Printf("%d ", copyData[i])
}
}
简而言之,就是通过直接复制和copy函数复制的区别,直接复制就是我们所谓的浅拷贝,当我们修改源切片,目标切片同样受到影响,而我们的copy函数复制则是深拷贝,当我们修改源切片,目标切片则不会受到影响
map集合,是存储KV键值对的一种容器(与Java中的语法类似)
键值对
的集合。map 是引用类型,可以使用如下方式声明:
//[keytype] 和 valuetype 之间允许有空格。
var mapname map[keytype]valuetype
其中:
在声明的时候不需要知道 map 的长度,因为 map 是可以动态增长的,未初始化的 map 的值是 nil,使用函数 len() 可以获取 map 中 键值对的数目。
package main
import "fmt"
func main() {
var mapList map[string]int
var mapAssigned map[string]int
mapList = map[string]int{"one": 1, "two": 2}
mapAssigned = mapLit
//mapAssigned 是 mapList 的引用,对 mapAssigned 的修改也会影响到 mapList 的值。
mapAssigned["two"] = 3
fmt.Printf("Map literal at \"one\" is: %d\n", mapList["one"])
fmt.Printf("Map assigned at \"two\" is: %d\n", mapList["two"])
fmt.Printf("Map literal at \"ten\" is: %d\n", mapList["ten"])
}
map的另外一种创建方式:
make(map[keytype]valuetype)
切记不要使用new创建map,否则会得到一个空引用的指针
map 可以根据新增的 key-value 动态的伸缩,因此它不存在固定长度或者最大限制,但是也可以选择标明 map 的初始容量 capacity,格式如下
make(map[keytype]valuetype, cap)
例如:
map2 := make(map[string]int, 100)
思考:既然一个 key 只能对应一个 value,而 value 又是一个原始类型,那么如果一个 key 要对应多个值怎么办?
答案是:使用切片
例如,当我们要处理 unix 机器上的所有进程,以父进程(pid 为整形)作为 key,所有的子进程(以所有子进程的 pid 组成的切片)作为
value。通过将 value 定义为 []int 类型或者其他类型的切片,就可以优雅的解决这个问题,示例代码如下所示:
mp1 := make(map[int][]int)
mp2 := make(map[int]*[]int)
map 的遍历过程使用 for range 循环完成,代码如下:
func main() {
var hashMap = map[string]int{"one": 1, "two": 2} //初始化一个key为string,value为int的map,
//hashMap := make(map[string]int)
hashMap["name"] = 1
hashMap["address"] = 2
hashMap["number"] = 3
for key, val := range hashMap {
fmt.Printf("<%s,%d>\n", key, val)
}
}
总结
在go当中,只能使用 delete() 内建函数从 map 中删除一组键值对,delete() 函数的格式如下:
delete(map, 键)
map 为要删除的 map 实例,键为要删除的 map 中键值对的键。
func main() {
var hashMap = map[string]int{"one": 1, "two": 2} //初始化一个key为string,value为int的map
//hashMap := make(map[string]int)
hashMap["name"] = 1
hashMap["address"] = 2
hashMap["number"] = 3
delete(hashMap, "number") //使用delete函数删除一个元素
for key, val := range hashMap {
fmt.Printf("<%s,%d>\n", key, val)
}
}
Go语言中并没有为 map 提供任何清空所有元素的函数、方法,清空 map 的唯一办法就是重新 make 一个新的 map,不用担心垃圾回收的效率,Go语言中的并行垃圾回收效率比写一个清空函数要高效的多。
注意map 在并发情况下,只读是线程安全的,同时读写是线程不安全的。
因为:a写到一半,b读到了a不一致的情况
由于普通的map在多线程环境下存在线程安全问题,所以引入sync.Map来保证并发安全
下面来看下并发情况下读写 map 时会出现的问题,代码如下:
// 创建一个int到int的映射
m := make(map[int]int)
// 开启一段并发代码
go func() {
// 不停地对map进行写入
for {
m[1] = 1
}
}()
// 开启一段并发代码
go func() {
// 不停地对map进行读取
for {
_ = m[1]
}
}()
// 无限循环, 让并发程序在后台执行
for {
}
运行代码会报错,输出如下:
fatal error: concurrent map read and map write
错误信息显示,并发的 map 读和 map 写,也就是说使用了两个并发函数不断地对 map 进行读和写而发生了竞态问题,map 内部会对这
种并发操作进行检查并提前发现。
需要并发读写时,一般的做法是加锁,但这样性能并不高,Go语言在 1.9 版本中提供了一种效率较高的并发安全的 sync.Map,
sync.Map 和 map 不同,不是以语言原生形态提供,而是在 sync 包下的特殊结构。
sync.Map 有以下特性:
package main
import (
"fmt"
"sync"
)
func main() {
//sync.Map 不能使用 make 创建
var scene sync.Map
// 将键值对保存到sync.Map
//sync.Map 将键和值以 interface{} 类型进行保存。
scene.Store("greece", 97)
scene.Store("london", 100)
scene.Store("egypt", 200)
// 从sync.Map中根据键取值
fmt.Println(scene.Load("london"))
// 根据键删除对应的键值对
scene.Delete("london")
// 遍历所有sync.Map中的键值对
//遍历需要提供一个匿名函数,参数为 k、v,类型为 interface{},每次 Range() 在遍历一个元素时,都会调用这个匿名函数把结果返回。
scene.Range(func(k, v interface{}) bool {
fmt.Println("iterate:", k, v)
return true
})
}
列表是一种非连续的存储容器,由多个节点组成,节点通过一些变量记录彼此之间的关系,列表有多种实现方法,如单链表、双链表等。
在Go语言中,列表使用 container/list 包来实现,内部的实现原理是双链表,列表能够高效地进行任意位置的元素插入和删除操作。
结构体定义:list
的核心结构体一共包含两个List
和Element
。结构体如下:
type List struct {
root Element // sentinel list element, only &root, root.prev, and root.next are used
len int // current list length excluding (this) sentinel element
}
root
:类型为Element
的结构体。len
:用于记录List
的长度(除去哨兵节点)。注意:为了简化处理链表边界条件而引入的附加链表结点,哨兵节点通常位于链表头部,它的值没有任何意义,在一个有哨兵节点的链表
中,从第二个节点开始才真正保存有意义的信息
List 的初始化有两种方法:分别是使用 New() 函数和 var 关键字声明,两种方法的初始化效果都是一致的。
1、 通过 container/list 包的 New() 函数初始化 list
变量名 := list.New()
2、通过 var 关键字声明初始化 list
var 变量名 list.List
列表与切片和 map 不同的是,列表并没有具体元素类型的限制,因此,列表的元素可以是任意类型,这既带来了便利,也引来一些问题,例如给列表中放入了一个 interface{} 类型的值,取出值后,如果要将 interface{} 转换为其他类型将会发生宕机。
双链表支持从队列前方或后方插入元素,分别对应的方法是 PushFront 和 PushBack。
注意:这两个方法都会返回一个 *list.Element 结构,如果在以后的使用中需要删除插入的元素,则只能通过 *list.Element 配合
Remove() 方法进行删除,这种方法可以让删除更加效率化,同时也是双链表特性之一。
下面代码展示如何给 list 添加元素:
l := list.New()
l.PushBack("fist")
l.PushFront(67)
代码说明如下:
列表插入元素的方法如下表所示。
方 法 | 功 能 |
---|---|
InsertAfter(v interface {}, mark * Element) * Element | 在 mark (目标)点之后插入元素,mark 点由其他插入函数提供 |
InsertBefore(v interface {}, mark * Element) *Element | 在 mark 点之前插入元素,mark 点由其他插入函数提供 |
PushBackList(other *List) | 添加 other 列表元素到尾部 |
PushFrontList(other *List) | 添加 other 列表元素到头部 |
列表插入函数的返回值会提供一个 *list.Element 结构,这个结构记录着列表元素的值以及与其他节点之间的关系等信息,从列表中删除
元素时,需要用到这个结构进行快速删除。
package main
import "container/list"
func main() {
l := list.New()
// 尾部添加
l.PushBack("canon")
// 头部添加
l.PushFront(67)
// 尾部添加后保存元素句柄
element := l.PushBack("fist") //向列表中插入first后,会返回first节点
// 在fist之后添加high
l.InsertAfter("high", element)
// 在fist之前添加noon
l.InsertBefore("noon", element)
// 使用
l.Remove(element)
}
代码说明如下:
下表中展示了每次操作后列表的实际元素情况 :
操作内容 | 列表元素 |
---|---|
l.PushBack(“canon”) | canon |
l.PushFront(67) | 67, canon |
element := l.PushBack(“fist”) | 67, canon, fist |
l.InsertAfter(“high”, element) | 67, canon, fist, high |
l.InsertBefore(“noon”, element) | 67, canon, noon, fist, high |
l.Remove(element) | 67, canon, noon, high |
遍历双链表需要配合 Front() 函数获取头元素,遍历时只要元素不为空就可以继续进行,每一次遍历都会调用元素的 Next() 函数,代码如下所示。
l := list.New()
// 尾部添加
l.PushBack("canon")
// 头部添加
l.PushFront(67)
for i := l.Front(); i != nil; i = i.Next() { // 与我们遍历链表的思路一致
fmt.Println(i.Value)
}
在Go语言中,布尔类型的零值(初始值)为 false,数值类型的零值为 0,字符串类型的零值为空字符串""
,而指针、切片、映射、通道、函数和接口的零值则是 nil。
注意:nil和其他语言的null是不同的。
1、nil 标识符是不能比较的
package main
import (
"fmt"
)
func main() {
//invalid operation: nil == nil (operator == not defined on nil)
fmt.Println(nil==nil)
}
2、nil 不是关键字或保留字
nil 并不是Go语言的关键字或者保留字,也就是说我们可以定义一个名称为 nil 的变量,比如下面这样:
//但不提倡这样做
var nil = errors.New("my god")
3、nil 没有默认类型
package main
import (
"fmt"
)
func main() {
//error :use of untyped nil
fmt.Printf("%T", nil)
print(nil)
}
4、不同类型 nil 的指针是一样的
package main
import (
"fmt"
)
func main() {
var arr []int
var num *int
fmt.Printf("%p\n", arr)
fmt.Printf("%p", num)
}
5、nil 是 map、slice、pointer、channel、func、interface 的零值
package main
import (
"fmt"
)
func main() {
var m map[int]string
var ptr *int
var c chan int
var sl []int
var f func()
var i interface{}
fmt.Printf("%#v\n", m)
fmt.Printf("%#v\n", ptr)
fmt.Printf("%#v\n", c)
fmt.Printf("%#v\n", sl)
fmt.Printf("%#v\n", f)
fmt.Printf("%#v\n", i)
}
零值是Go语言中变量在声明之后但是未初始化被赋予的该类型的一个默认值。
不同类型的 nil 值占用的内存大小可能是不一样的
package main
import (
"fmt"
"unsafe"
)
func main() {
var p *struct{}
fmt.Println( unsafe.Sizeof( p ) ) // 8
var s []int
fmt.Println( unsafe.Sizeof( s ) ) // 24
var m map[int]bool
fmt.Println( unsafe.Sizeof( m ) ) // 8
var c chan string
fmt.Println( unsafe.Sizeof( c ) ) // 8
var f func()
fmt.Println( unsafe.Sizeof( f ) ) // 8
var i interface{}
fmt.Println( unsafe.Sizeof( i ) ) // 16
}
具体的大小取决于编译器和架构
make 关键字的主要作用是创建 slice、map 和 Channel 等内置的数据结构,而 new 的主要作用是为类型申请一片内存空间,并返回指向这片内存的指针。
OkHttp的作用 OkHttp is an HTTP client。 如果是HTTP的方式想得到数据,就需要我们在页面上输入网址,如果网址没有问题,就有可能返回对应的String字符串,如果这个地址
Record 一个重要的字符串算法,这是第三次复习。 通过总结我认为之所以某个算法总是忘记,是因为大脑始终没有认可这种算法的逻辑(也就是脑回路)。 本篇主要讲解从KMP的应用场景,
SQL 注入基础 【若本文有问题请指正】 有回显 回显正常 基本步骤 1. 判断注入类型 数字型 or 字符型 数字型【示例】:
标签: #Prompt #LLM 创建时间:2023-04-28 17:05:45 链接: 课程(含JupyterNotebook) , 中文版 讲师: An
Swift是供iOS和OS X应用编程的新编程语言,基于C和Objective-C,而却没有C的一些兼容约束。Swift采用了安全的编程模式和添加现代的功能来是的编程更加简单、灵活和有趣。界面则基于
VulnStack-红日靶机七 概述 在 VulnStack7 是由 5 台目标机器组成的三层网络环境,分别为 DMZ 区、第二层网络、第三层网络。涉及到的知识点也是有很多,redis未授权的利用
红日靶机(一)笔记 概述 域渗透靶机,可以练习对域渗透的一些知识,主要还是要熟悉 powershell 语法,powershell 往往比 cmd 的命令行更加强大,而很多渗透开源的脚本都是 po
八大绩效域详细解析 18.1 干系人绩效域 跟干系人所有相关的活动. 一、预期目标 ①与干系人建立高效的工作关系 ②干系人认同项目目标 ③支持项目的干系人提高
18.3 开发方法和生命周期绩效域 跟开发方法,项目交付节奏和生命周期相关的活动和职能. 一、预期目标: ①开发方法与项目可交付物相符合; ②将项目交付与干系人价值紧密
18.7 度量绩效域 度量绩效域涉及评估项目绩效和采取应对措施相关的活动和职能度量是评估项目绩效,并采取适当的应对措施,以保持最佳项目绩效的过程。 一、 预期目标: ①对项目状况
pygraphviz 安装,windows系统: 正确的安装姿势: Prebuilt-Binaries/PyGraphviz at master · CristiFati/Prebuilt-Binar
今天给大家介绍IDEA开发工具如何配置devtools热加载工具。 1、devtools原理介绍 spring-boot-devtools是spring为开发者提供的热加载
一 什么是正则表达式 // 正则表达式(regular expression)是一个描述字符模式的对象; // JS定义RegExp类表示正则表达式; // String和RegExp都定义了使用
目前是2022-04-25 23:48:03,此篇博文分享到互联网上估计是1-2个月后的事了,此时的OpenCV3最新版是3.4.16 这里前提是gcc,g++,cmake都需要安装好。 没安装好的,
一、概述 1、Flink 是什么 Apache Flink is a framework and distributed processing engine for stateful comput
一、window 概述 Flink 通常处理流式、无限数据集的计算引擎,窗口是一种把无限流式数据集切割成有限的数据集进行计算。window窗口在Flink中极其重要。 二、window 类型 w
一、触发器(Trigger) 1.1、案例一 利用global window + trigger 计算单词出现三次统计一次(有点像CountWindow) 某台虚拟机或者mac 终端输入:nc -
一、时间语义 在Flink 中涉及到三个重要时间概念:EventTime、IngestionTime、ProcessingTime。 1.1、EventTime EventTime 表示日志事
一、概述 以wordcount为例,为什么每次输入数据,flink都能统计每个单词的总数呢?我们都没有显示保存每个单词的状态值,但是每来一条数据,都能计算单词的总数。事实上,flink在底层维护了每
一、概述 checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保 证应用流图状
我是一名优秀的程序员,十分优秀!